Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(7): 1654-1675, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437265

RESUMO

Many modern millimeter and submillimeter ("mm-wave") telescopes for astronomy are deploying more detectors by increasing the detector pixel density and, with the rise of lithographed detector architectures and high-throughput readout techniques, it is becoming increasingly practical to overfill the focal plane. However, when the pixel pitch p p i x is small compared to the product of the wavelength λ and the focal ratio F, or p p i x ≲1.2F λ, the Bose term of the photon noise correlates between neighboring detector pixels due to the Hanbury Brown and Twiss (HBT) effect. When this HBT effect is non-negligible, the array-averaged sensitivity scales with the detector count N det less favorably than the uncorrelated limit of Ndet-1/2. In this paper, we present a general prescription to calculate this HBT correlation based on a quantum optics formalism and extend it to polarization-sensitive detectors. We then estimate the impact of HBT correlations on the sensitivity of a model mm-wave telescope and discuss the implications for a focal plane design.

2.
Appl Opt ; 63(6): 1618-1627, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437377

RESUMO

We developed a broadband two-layer anti-reflection (AR) coating for use on a sapphire half-wave plate (HWP) and an alumina infrared (IR) filter for the cosmic microwave background (CMB) polarimetry. Measuring the faint CMB B-mode signals requires maximizing the number of photons reaching the detectors and minimizing spurious polarization due to reflection with an off-axis incident angle. Sapphire and alumina have high refractive indices of 3.1 and are highly reflective without an AR coating. This paper presents the design, fabrication, quality control, and measured performance of an AR coating using thermally sprayed mullite and Duroid 5880LZ. This technology enables large optical elements with diameters of 600 mm. We also present a thermography-based nondestructive quality control technique, which is key to assuring good adhesion and preventing delamination when thermal cycling. We demonstrate the average reflectance of about 2.6% (0.9%) for two observing bands centered at 90/150 (220/280) GHz. At room temperature, the average transmittance of a 105 mm square test sample at 220/280 GHz is 83%, and it will increase to 90% at 100 K, attributed to reduced absorption losses. Therefore, our developed layering technique has proved effective for 220/280 GHz applications, particularly in addressing dielectric loss concerns. This AR coating technology has been deployed in the cryogenic HWP and IR filters of the Simons Array and the Simons observatory experiments and applies to future experiments such as CMB-S4.

3.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109472

RESUMO

For cosmic microwave background (CMB) polarization observations, calibration of detector polarization angles is essential. We have developed a fully remote controlled calibration system with a sparse wire grid that reflects linearly polarized light along the wire direction. The new feature is a remote-controlled system for regular calibration, which has not been possible in sparse wire grid calibrators in past experiments. The remote control can be achieved by two electric linear actuators that load or unload the sparse wire grid into a position centered on the optical axis of a telescope between the calibration time and CMB observation. Furthermore, the sparse wire grid can be rotated by using a motor. A rotary encoder and a gravity sensor are installed on the sparse wire grid to monitor the wire direction. They allow us to achieve detector polarization angle calibration with an expected systematic error of 0.08°. The calibration system will be installed in small-aperture telescopes at Simons Observatory.

4.
Rev Sci Instrum ; 93(5): 055106, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649759

RESUMO

We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory small aperture telescope. The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cryogenically cycling and destructively pull-testing strut samples, (ii) non-destructively pull-testing the final truss, and (iii) measuring the thermal conductivity of the carbon fiber tubes. We found that the strut strength is limited by the mounting fasteners and the strut end caps, not the epoxy adhesive or the carbon fiber tube. This result is consistent with our numerical predictions. Our thermal measurements suggest that the conductive heat load through the struts (from 4 to 1 K) will be less than 1 mW. This strut design may be a promising candidate for use in other cryogenic support structures.

5.
Appl Opt ; 60(4): 864-874, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690402

RESUMO

Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to 65∘ angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.

6.
J Opt Soc Am A Opt Image Sci Vis ; 31(7): 1557-76, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25121445

RESUMO

High-sensitivity receiver systems with near-ideal polarization sensitivity are highly desirable for development of millimeter and submillimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this work, we examine the angular- and polarization-dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of η/2, where η is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross-polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of η/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to ≲60°. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of the recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this work offer key tools in the design consideration of the instruments using the multimoded polarimeters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...