Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microorg Control ; 28(3): 123-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866894

RESUMO

Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.


Assuntos
Actinobacteria , Micrococcaceae , Solanum lycopersicum , Sementes
2.
Insects ; 11(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679911

RESUMO

An electric field is the space surrounding an electric charge, within which it is capable of exerting a perceptible force on another electric charge. Especially under high voltage, electric fields induce various electrostatic phenomena, some of which could be utilized to provide remarkable pest control measures. The main focus of the present study was to introduce an attractive force generated by a surface charge on an insulated electrified conductor, which was successfully used to construct an electric field screen that prevented airborne nuisances (spores, flying insects, pollen, and fine smoke) from entering the interiors of various facilities. Another focus was the disinclination of insects to enter the electric field, thus, giving the electric field screen the ability to repel insects. Charges accumulated on the surfaces of non-insulated conductors are mobile through discharge, based on their potential difference. Such arc discharge was strong enough to destroy insects that were exposed to it. Some precedent illustrative examples are cited to explain the principles of attraction, dielectrophoretic movement of spores, and discharge-mediated positive electrification of insects, and to discuss how electric fields are generated and used in electric field-based pest control strategies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28098835

RESUMO

An electrostatic-barrier-forming window (EBW) was devised to capture airborne pollen, which can cause allergic pollinosis. The EBW consisted of three layers of insulated conductor wires (ICWs) and two voltage generators that supplied negative charges to the two outer ICW layers and a positive charge to the middle ICW layer. The ICWs generated an attractive force that captured pollen of the Japanese cedar, Cryptomeria japonica, from air blown through the EBW. The attractive force was directly proportional to the applied voltage. At ≥3.5 kV, the EBW exerted sufficient force to capture all pollen carried at an air flow of 3 m/s, and pollen-free air passed through the EBW. The findings demonstrated that the electrostatic barrier that formed inside the EBW was very effective at capturing airborne pollen; thus, it could allow a home to remain pollen-free and healthy despite continuous pollen exposure.


Assuntos
Acessibilidade Arquitetônica , Cryptomeria/efeitos adversos , Pólen/efeitos adversos , Prevenção Primária/instrumentação , Rinite Alérgica Sazonal/etiologia , Rinite Alérgica Sazonal/prevenção & controle , Eletricidade Estática , Poluentes Atmosféricos/efeitos adversos , Alérgenos/efeitos adversos , Feminino , Humanos , Masculino , Pólen/imunologia
4.
Biocontrol Sci ; 21(1): 37-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27009508

RESUMO

The aim of this study was to investigate the effect of low-pressure plasma treatment on seed disinfection and the possible mechanisms underlying this effect. Seed-borne disease refers to plant diseases that are transmitted by seeds; seed disinfection is an important technique for prevention of such diseases. In this study, the effectiveness of low-pressure plasma treatment in the inactivation of the seed-borne plant pathogenic bacterium, Xanthomonas campestris, inoculated on cruciferous seeds, was evaluated. The highest inactivation effect was observed when the treatment voltage and argon gas flow rate were 5.5 kV and 0.5 L/min, respectively. The viable cell number of X. campestris was 6.6 log cfu/seed before plasma treatment, and decreased by 3.9 log after 5 min of treatment and by 6.6 log after 40 min. Ethidium monoazide treatment and quantitative real-time PCR results indicated that both the cell membrane and target DNA region were damaged following 5 min of plasma treatment. Although both heat and ozone were generated during the plasma treatment, the contribution of both factors to the inactivation of X. campestris was small by itself in our low-pressure plasma system. Overall, we have shown that our low-pressure plasma system has great applicability to controlling plant pathogenic bacterium contamination of seeds.


Assuntos
Desinfecção , Gases em Plasma , Pressão , Sementes/microbiologia , Xanthomonas campestris , Membrana Celular , Dano ao DNA , Desinfecção/métodos , Temperatura Alta , Viabilidade Microbiana , Ozônio
5.
Insects ; 6(2): 442-54, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-26463195

RESUMO

Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs) were arranged at constant intervals along a polyvinylchloride (PVC) pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries) inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse.

6.
Biocontrol Sci ; 19(2): 99-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24975415

RESUMO

Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.


Assuntos
Brassica/efeitos dos fármacos , Desinfecção/métodos , Gases em Plasma/farmacologia , Rhizoctonia/efeitos dos fármacos , Sementes/efeitos dos fármacos , Brassica/crescimento & desenvolvimento , Brassica/microbiologia , Desinfecção/instrumentação , Germinação/efeitos dos fármacos , Pressão , Rhizoctonia/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Temperatura , Fatores de Tempo
7.
Mycol Res ; 110(Pt 1): 18-27, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16378716

RESUMO

Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.


Assuntos
Ascomicetos/fisiologia , Esporos Fúngicos/ultraestrutura , Hordeum/microbiologia , Folhas de Planta/microbiologia , Coloração e Rotulagem , Eletricidade Estática
8.
Phytopathology ; 96(9): 967-74, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18944052

RESUMO

ABSTRACT In an attempt to physically protect greenhouse tomato plants from the powdery mildew fungus Oidium neolycopersici, we developed a new electrostatic spore precipitator in which a copper wire conductor is linked to an electrostatic generator and covered with a transparent acrylic cylinder (insulator). The conductor was negatively charged by the generator, and the electrostatic field created by the conductor was used to dielectrically polarize the insulator cylinder. The dielectrically polarized cylinder also produced an electrostatic force without a spark discharge. This force was directly proportional to the potential applied to the conductor and was used to attract conidia of the pathogen. The efficacy of this spore precipitator in protecting hydroponically cultured tomato plants from powdery mildew was evaluated in the greenhouse. The hydroponic culture troughs were covered with a cubic frame installed with the spore precipitator, and the disease progress on precipitator-guarded and unguarded seedlings was traced after the conidia were disseminated mechanically from inoculum on tomato plants. Seedlings in the guarded troughs remained uninfected during the entire experiment, in spite of rapid spread of the disease to all leaves of the unguarded seedlings.

9.
Phytopathology ; 95(10): 1137-43, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18943465

RESUMO

ABSTRACT Greenhouse-grown tomato seedlings were inoculated naturally with two genera of powdery mildew conidia forming appressorial germ tubes that could not be differentiated by length alone. For direct identification, single germinated conidia were removed from leaves by means of a glass pipette linked to the manipulator of a high-fidelity digital microscope. This microscope enabled in vivo observation of the fungi without leaf decoloration or fungal staining. The isolated conidia were subjected to PCR amplification of the 5.8S rDNA and its adjacent internal transcribed spacer sequences followed by nested PCR to attain sensitivity high enough to amplify target nucleotide sequences (PCR/nested PCR). Target sequences from the conidia were completely coincident with those of the pathogen Oidium neolycopersici or Erysiphe trifolii (syn. Microsphaera trifolii), which is nonpathogenic on tomato. Using RT-PCR/nested PCR or multiplex RT-PCR/nested PCR, it was possible to amplify transcripts expressed in single conidia. Conidia at pre- and postgermination stages were removed individually from tomato leaves, and two powdery mildew genes were monitored. The results indicated that the beta-tubulin homolog TUB2-ol was expressed at pre- and postgermination stages and the cutinase homolog CUT1-ol was only expressed postgermination. Combining digital microscopic micromanipulation and two-step PCR amplification is thus useful for investigation of individual propagules on the surface of plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...