Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 5174(3): 201-232, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095401

RESUMO

The geographically widespread species Afrixalus laevis (Anura: Hyperoliidae) currently has a disjunct distribution in western Central Africa (Cameroon, Equatorial Guinea, Gabon, and possibly adjacent countries) and the area in and near the Albertine Rift in eastern Democratic Republic of the Congo and neighboring countries. At least two herpetologists have previously suggested that these disjunct populations represent distinct species, and herein, we utilize an integrative taxonomic approach with molecular and morphological data to reconcile the taxonomy of these spiny reed frogs. We sequenced 1554 base pairs of the 16S and RAG1 genes from 34 samples of A. laevis and one sample of A. orophilus (sympatric with eastern populations of A. laevis), and combined these data with previously sequenced GenBank Afrixalus samples via the bioinformatics toolkit SuperCRUNCH. Phylogenetic trees, dated phylogenetic analyses, and species-delimitation analyses were generated with RAxML, BEAST, and BPP, respectively. Eleven mensural characters were taken from multiple specimens of A. laevis and A. orophilus, and compared with paired t-tests and analyses of covariance. These combined results suggested populations of A. laevis in western Central Africa (Cameroon and Bioko Island, Equatorial Guinea) represent one species, whereas populations from the Albertine Rift and nearby forests represent two undescribed taxa that are sister to A. dorsimaculatus. The two new species (A. lacustris sp. nov. and A. phantasma sp. nov.) are distinguished by our phylogenetic and species-delimitation analyses, significant differences in several mensural characters, qualitative morphological differences, and by their non-overlapping elevational distribution.


Assuntos
Anuros , Florestas , Animais , Filogenia
2.
Mol Phylogenet Evol ; 174: 107514, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35589055

RESUMO

The systematics of the African frog family Hyperoliidae has undergone turbulent changes in last decades. Representatives of several genera have not been genetically investigated or with only limited data, and their phylogenetic positions are thus still not reliably known. This is the case of the De Witte's Clicking Frog (Kassinula wittei) which belongs to a monotypic genus. This miniature frog occurs in a poorly studied region, southeastern Democratic Republic of the Congo, northern Zambia, Angola. So far it is not settled whether this genus belongs to the subfamily Kassininae as a relative of the genus Kassina, or to the subfamily Hyperoliinae as a relative of the genus Afrixalus. Here we present for the first time a multilocus phylogenetic reconstruction (using five nuclear and one mitochondrial marker) of the family Hyperoliidae, including Kassinula. We demonstrate with high confidence that Kassinula is a member of Hyperoliinae belonging to a clade also containing Afrixalus (sub-Saharan Africa), Heterixalus (Madagascar) and Tachycnemis (Seychelles). We find that Kassinula represents a divergent lineage (17-25 Mya), which supports its separate genus-level status, but its exact systematic position remains uncertain. We propose to name the clade to which the above four genera belong as the tribe Tachycnemini Channing, 1989. A new taxonomy of the family Hyperoliidae was recently proposed by Dubois et al. (2021: Megataxa 5, 1-738). We demonstrate here that the new taxonomy was based on a partially erroneous phylogenetic reconstruction resulting from a supermatrix analysis of chimeric DNA sequences combining data from two families, Hyperoliidae and Arthroleptidae (the case of Cryptothylax). We therefore correct the erroneous part and propose a new, revised suprageneric taxonomy of the family Hyperoliidae. We also emphasize the importance of inspecting individual genetic markers before their concatenation or coalescent-based tree reconstructions to avoid analyses of chimeric DNA sequences producing incorrect phylogenetic reconstructions. Especially when phylogenetic reconstructions are used to propose taxonomies and systematic classifications.


Assuntos
Anuros , Animais , Anuros/genética , Madagáscar , Filogenia , Seicheles , Zâmbia
3.
Mol Ecol ; 31(15): 3979-3998, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516675

RESUMO

Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.


La sympatrie secondaire parmi les espèces sœurs est fortement associée à la divergence génétique et écologique. Ce modèle suggère que pour que des espèces étroitement liées coexistent en sympatrie secondaire, elles doivent accumuler des différences dans les traits qui contribuent à l'isolement écologique ou reproductif. Ici, nous avons caractérisé la divergence inter- et intra-spécifique chez trois espèces de grenouilles arboricoles géantes dont les distributions s'étendent à travers l'Afrique de l'Ouest et Centrale. Avec des données génétiques, nous avons démontré que la divergence au niveau des espèces coïncide temporellement et géographiquement avec une période de fragmentation forestière à la fin du Pliocène. Nos modèles de niches environnementales ont soutenu une histoire dynamique de stabilité climatique, et ont indiqué que les trois espèces occupent des niches environnementales distinctes. Nous avons trouvé une différenciation morphologique modeste parmi les trois espèces mais une divergence significative dans le diamètre du tympan et les cris des mâles. De plus, nous avons confirmé que deux espèces sont présentes en sympatrie secondaire en Afrique Centrale mais n'avons trouvé aucune preuve d'hybridation. Ces résultats soutiennent l'hypothèse que les cycles d'échange génétique et d'isolement à travers l'Afrique de l'Ouest et Centrale ont contribué à une profonde concentration de biodiversité dans la région. De plus, la divergence des traits écologiques et reproducteurs semble avoir joué un rôle important dans le maintien de lignées distinctes. Au niveau intra-spécifique, nous avons constaté que les refuges climatiques, les gradients de précipitation, les incursions marines et potentiellement les barrières fluviales ont généré une structure phylogéographique pendant le Pléistocène et jusqu'à l'Holocène. Des études examinant la divergence phénotypique et le contact secondaire entre ces populations géographiquement structurées pourraient démontrer comment des barrières biogéographiques à échelle plus petite et plus récentes contribuent à la diversification régionale.


Assuntos
Anuros , Biodiversidade , África Central , Animais , Anuros/genética , DNA Mitocondrial/genética , Florestas , Variação Genética , Masculino , Filogenia , Filogeografia , Ranidae/genética
4.
Ecol Evol ; 11(11): 6133-6152, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141208

RESUMO

The relative roles of rivers versus refugia in shaping the high levels of species diversity in tropical rainforests have been widely debated for decades. Only recently has it become possible to take an integrative approach to test predictions derived from these hypotheses using genomic sequencing and paleo-species distribution modeling. Herein, we tested the predictions of the classic river, refuge, and river-refuge hypotheses on diversification in the arboreal sub-Saharan African snake genus Toxicodryas. We used dated phylogeographic inferences, population clustering analyses, demographic model selection, and paleo-distribution modeling to conduct a phylogenomic and historical demographic analysis of this genus. Our results revealed significant population genetic structure within both Toxicodryas species, corresponding geographically to river barriers and divergence times from the mid-Miocene to Pliocene. Our demographic analyses supported the interpretation that rivers are indications of strong barriers to gene flow among populations since their divergence. Additionally, we found no support for a major contraction of suitable habitat during the last glacial maximum, allowing us to reject both the refuge and river-refuge hypotheses in favor of the river-barrier hypothesis. Based on conservative interpretations of our species delimitation analyses with the Sanger and ddRAD data sets, two new cryptic species are identified from east-central Africa. This study highlights the complexity of diversification dynamics in the African tropics and the advantages of integrative approaches to studying speciation in tropical regions.

5.
Zootaxa ; 4965(1): zootaxa.4965.1.1, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33903493

RESUMO

The genus Toxicodryas, historically included with the renowned Australasian cat-eyed snakes of the colubrid genus Boiga, currently includes two widespread species (T. blandingii and T. pulverulenta) in western, central, and eastern Africa. We leverage findings from a recent phylogenomic and historical demographic analysis of this genus (based on 2848-4471 Rad-seq loci from across the genome), with robust sampling from throughout the ranges of both species, to define two additional taxonomic units, with species boundaries corresponding to river barriers. Additional morphometric data from scores of examined museum specimens and literature records bolster the recognition of these two new cryptic species. We hypothesize that T. blandingii occurs west of the confluence of the Congo and Ubangi rivers, whereas a cryptic new species that is found east of this biogeographic barrier has significantly higher numbers of ventral scale counts in both sexes, additional significant differences in several scale counts, and lower venom toxicity. Toxicodryas pulverulenta occurs west of the Niger Delta in West Africa, whereas a cryptic new species that is found east of this biogeographic barrier has significantly higher numbers of subcaudal scale counts in both sexes. A review of published information regarding morphological variation, ecology, natural history, habitat, and venom is summarized for these four Toxicodryas species.


Assuntos
Colubridae , África Central , Animais , Colubridae/anatomia & histologia , Colubridae/classificação , Feminino , Masculino , Filogenia , Especificidade da Espécie
6.
PLoS One ; 14(4): e0214889, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30995262

RESUMO

Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.


Assuntos
Viperidae/classificação , Viperidae/genética , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Citocromos b/genética , Evolução Molecular , Genes Mitocondriais , Genes RAG-1 , Genes mos , NADH Desidrogenase/genética , Filogenia , Comportamento Predatório , RNA Ribossômico 16S/genética , Fatores de Tempo , Viperidae/fisiologia
7.
Mol Phylogenet Evol ; 130: 357-365, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366085

RESUMO

The African green and bush snakes of the genus Philothamnus currently comprises 21 species and three subspecies and occurs throughout sub-Saharan Africa. The genus has been the subject of previous taxonomic revisions based on traditional morphological characters and limited genetic assessment, and may not reflect their evolutionary history. Indeed, previous findings based on phylogenetics show discordant results of interspecific relationships and question the monophyly of the genus, although taxon sampling has been limited to date. We investigated phylogenetic affinities within Philothamnus with more inclusive genetic and geographical sampling, with the aim of better understanding their evolutionary history, so that future taxonomic revision of Philothamnus can be better informed. Species relationships were examined within a phylogenetic context and sampling included 133 ingroup samples from 16 taxa. Phylogenies were constructed in Bayesian and likelihood frameworks using three mitochondrial (16S, cyt b and ND4) and two nuclear (c-mos and RAG1) markers. Competing hypotheses relating to the monophyly of the genus were tested with a Shimodaira-Hasegawa test. To examine species boundaries, Bayesian General Mixed Yule-Coalescent Model and multi-rate Poisson Tree Processes analyses were conducted. In addition, a barcoding approach was used to further clarify species-level relationships by comparing frequency distributions between intra- and interspecific sequence divergence. The genus was recovered as monophyletic; however, species-delimitation results suggest that the current taxonomy does not reflect the evolutionary history of this group. For example, Philothamnus s. semivariegatus is paraphyletic, with at least four distinct clades. Philothamnus carinatus consists of two cryptic (sister) lineages from Central and West Africa that are deeply divergent, suggesting a long history of isolation between those regions. Furthermore, the subspecies P. n. natalensis and P. n. occidentalis show strong support for species-level divergence, which reflects their morphological and ecological differences. Accordingly, we elevate P. occidentalisnov. comb. to a full species. A fully informed taxonomic revision of these taxa will require additional morphological and ecological data for corroboration, but it seems that the morphological characters (e.g. scalation, dentition) used to describe these species to date are labile within and between species. This most likely has clouded our understanding of the species boundaries within the genus. Our phylogeny and species-delimitation analyses should provide a sounder framework for taxonomy, but may also prove useful toward understanding the morphological adaptations of these species to their respective habitats.


Assuntos
Colubridae/genética , Variação Genética , África Ocidental , Animais , Teorema de Bayes , Geografia , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
8.
Zootaxa ; 4455(1): 68-98, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314221

RESUMO

Cobras are among the most widely known venomous snakes, and yet their taxonomy remains incompletely understood, particularly in Africa. Here, we use a combination of mitochondrial and nuclear gene sequences and morphological data to diagnose species limits within the African forest cobra, Naja (Boulengerina) melanoleuca. Mitochondrial DNA sequences reveal deep divergences within this taxon. Congruent patterns of variation in mtDNA, nuclear genes and morphology support the recognition of five separate species, confirming the species status of N. subfulva and N. peroescobari, and revealing two previously unnamed West African species, which are described as new: Naja (Boulengerina) guineensis sp. nov. Broadley, Trape, Chirio, Ineich Wüster, from the Upper Guinea forest of West Africa, and Naja (Boulengerina) savannula sp. nov. Broadley, Trape, Chirio Wüster, a banded form from the savanna-forest mosaic of the Guinea and Sudanian savannas of West Africa. The discovery of cryptic diversity in this iconic group highlights our limited understanding of tropical African biodiversity, hindering our ability to conserve it effectively.


Assuntos
Elapidae , Genes Mitocondriais , África , África Ocidental , Animais , Florestas , Naja
9.
Mol Phylogenet Evol ; 127: 288-303, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29551523

RESUMO

Members of the snake subfamily Aparallactinae occur in various habitats throughout sub-Saharan Africa. The monophyly of aparallactine snakes is well established, but relationships within the subfamily are poorly known. We sampled 158 individuals from six of eight aparallactine genera in sub-Saharan Africa. We employed concatenated gene-tree analyses, divergence dating approaches, and ancestral-area reconstructions to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). As a result, we uncover several cryptic lineages and elevate a lineage of Polemon to full species status. Diversification occurred predominantly during the Miocene, with a few speciation events occurring subsequently in the Pliocene and Pleistocene. Biogeographic analyses suggested that the Zambezian biogeographic region, comprising grasslands and woodlands, facilitated radiations, vicariance, and dispersal for many aparallactines. Moreover, the geographic distributions of many forest species were fragmented during xeric and cooler conditions, which likely led to diversification events. Biogeographic patterns of aparallactine snakes are consistent with previous studies of other sub-Saharan herpetofauna.


Assuntos
Clima Desértico , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Filogeografia , África Subsaariana , Animais , DNA Mitocondrial/genética , Funções Verossimilhança , Lagartos/genética , Serpentes/anatomia & histologia , Serpentes/genética
10.
Mol Phylogenet Evol ; 122: 125-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29199108

RESUMO

Several biogeographic barriers in the Central African highlands have reduced gene flow among populations of many terrestrial species in predictable ways. Yet, a comprehensive understanding of mechanisms underlying species divergence in the Afrotropics can be obscured by unrecognized levels of cryptic diversity, particularly in widespread species. We implemented a multilocus phylogeographic approach to examine diversity within the widely distributed Central African pygmy chameleon, Rhampholeon boulengeri. Gene-tree analyses coupled with a comparative coalescent-based species delimitation framework revealed R. boulengeri as a complex of at least six genetically distinct species. The spatiotemporal speciation patterns for these cryptic species conform to general biogeographic hypotheses supporting vicariance as the main factor behind patterns of divergence in the Albertine Rift, a biodiversity hotspot in Central Africa. However, we found that parapatric species and sister species inhabited adjacent habitats, but were found in largely non-overlapping elevational ranges in the Albertine Rift, suggesting that differentiation in elevation was also an important mode of divergence. The phylogeographic patterns recovered for the genus-level phylogeny provide additional evidence for speciation by isolation in forest refugia, and dating estimates indicated that the Miocene was a significant period for this diversification. Our results highlight the importance of investigating cryptic diversity in widespread species to improve understanding of diversification patterns in environmentally diverse regions such as the montane Afrotropics.


Assuntos
Biodiversidade , Lagartos/classificação , África Central , Animais , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Lagartos/genética , Filogenia , Filogeografia , Análise de Sequência de DNA
11.
Mol Ecol ; 26(19): 5223-5244, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28753250

RESUMO

Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co-distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo-Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species-specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo-Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.


Assuntos
Anuros/classificação , Evolução Biológica , Mudança Climática , Florestas , Filogenia , África Central , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Guiné , Ilhas , Masculino , Modelos Biológicos , Fenótipo , Filogeografia
12.
Mol Phylogenet Evol ; 106: 254-269, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664344

RESUMO

The Mascarene ridged frog, Ptychadena mascareniensis, is a species complex that includes numerous lineages occurring mostly in humid savannas and open forests of mainland Africa, Madagascar, the Seychelles, and the Mascarene Islands. Sampling across this broad distribution presents an opportunity to examine the genetic differentiation within this complex and to investigate how the evolution of bioclimatic niches may have shaped current biogeographic patterns. Using model-based phylogenetic methods and molecular-clock dating, we constructed a time-calibrated molecular phylogenetic hypothesis for the group based on mitochondrial 16S rRNA and cytochrome b (cytb) genes and the nuclear RAG1 gene from 173 individuals. Haplotype networks were reconstructed and species boundaries were investigated using three species-delimitation approaches: Bayesian generalized mixed Yule-coalescent model (bGMYC), the Poisson Tree Process model (PTP) and a cluster algorithm (SpeciesIdentifier). Estimates of similarity in bioclimatic niche were calculated from species-distribution models (maxent) and multivariate statistics (Principal Component Analysis, Discriminant Function Analysis). Ancestral-area reconstructions were performed on the phylogeny using probabilistic approaches implemented in BioGeoBEARS. We detected high levels of genetic differentiation yielding ten distinct lineages or operational taxonomic units, and Central Africa was found to be a diversity hotspot for these frogs. Most speciation events took place throughout the Miocene, including "out-of-Africa" overseas dispersal events to Madagascar in the East and to São Tomé in the West. Bioclimatic niche was remarkably well conserved, with most species tolerating similar temperature and rainfall conditions common to the Central African region. The P. mascareniensis complex provides insights into how bioclimatic niche shaped the current biogeographic patterns with niche conservatism being exhibited by the Central African radiation and niche divergence shaping populations in West Africa and Madagascar. Central Africa, including the Albertine Rift region, has been an important center of diversification for this species complex.


Assuntos
Ranidae/classificação , África , Animais , Teorema de Bayes , Citocromos b/classificação , Citocromos b/genética , Citocromos b/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecologia , Haplótipos , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Madagáscar , Filogenia , Filogeografia , Análise de Componente Principal , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ranidae/genética , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 100: 409-423, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27118179

RESUMO

African snake-eyed skinks are relatively small lizards of the genera Panaspis and Afroablepharus. Species allocation of these genera frequently changed during the 20th century based on morphology, ecology, and biogeography. Members of these genera occur primarily in savanna habitats throughout sub-Saharan Africa and include species whose highly conserved morphology poses challenges for taxonomic studies. We sequenced two mitochondrial (16S and cyt b) and two nuclear genes (PDC and RAG1) from 76 Panaspis and Afroablepharus samples from across eastern, central, and southern Africa. Concatenated gene-tree and divergence-dating analyses were conducted to infer phylogenies and biogeographic patterns. Molecular data sets revealed several cryptic lineages, with most radiations occurring during the mid-Miocene to Pliocene. We infer that rifting processes (including the formation of the East African Rift System) and climatic oscillations contributed to the expansion and contraction of savannas, and caused cladogenesis in snake-eyed skinks. Species in Panaspis and Afroablepharus used in this study, including type species for both genera, formed a monophyletic group. As a result, the latter genus should be synonymized with the former, which has priority. Conservatively, we continue to include the West African species P. breviceps and P. togoensis within an expanded Panaspis, but note that they occur in relatively divergent clades, and their taxonomic status may change with improved taxon sampling. Divergence estimates and cryptic speciation patterns of snake-eyed skinks were consistent with previous studies of other savanna vertebrate lineages from the same areas examined in this study.


Assuntos
Lagartos/genética , África Subsaariana , África Austral , Animais , Anuros/genética , Sequência de Bases , DNA Mitocondrial/genética , Evolução Molecular , Especiação Genética , Pradaria , Lagartos/classificação , Tipagem de Sequências Multilocus , Filogenia , Proteínas de Répteis/genética
14.
Mol Ecol ; 24(4): 909-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25583226

RESUMO

The African clawed frog Xenopus laevis has a large native distribution over much of sub-Saharan Africa and is a model organism for research, a proposed disease vector, and an invasive species. Despite its prominent role in research and abundance in nature, surprisingly little is known about the phylogeography and evolutionary history of this group. Here, we report an analysis of molecular variation of this clade based on 17 loci (one mitochondrial, 16 nuclear) in up to 159 individuals sampled throughout its native distribution. Phylogenetic relationships among mitochondrial DNA haplotypes were incongruent with those among alleles of the putatively female-specific sex-determining gene DM-W, in contrast to the expectation of strict matrilineal inheritance of both loci. Population structure and evolutionarily diverged lineages were evidenced by analyses of molecular variation in these data. These results further contextualize the chronology, and evolutionary relationships within this group, support the recognition of X. laevis sensu stricto, X. petersii, X. victorianus and herein revalidated X. poweri as separate species. We also propose that portions of the currently recognized distributions of X. laevis (north of the Congo Basin) and X. petersii (south of the Congo Basin) be reassigned to X. poweri.


Assuntos
Evolução Biológica , Genética Populacional , Filogenia , Xenopus laevis/classificação , África Subsaariana , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Loci Gênicos , Haplótipos , Padrões de Herança , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
15.
Mol Phylogenet Evol ; 82 Pt A: 75-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25291074

RESUMO

The genus Leptopelis occurs in multiple habitats throughout sub-Saharan Africa, and it includes several species that have highly variable color patterns, which makes taxonomic studies challenging. In this study, we examined multiple populations of Leptopelis from the Albertine Rift (AR), a region known for its high levels of endemism and biodiversity. Currently, five species are recognized from the AR: L. anebos, L. fiziensis, L. karissimbensis, L. kivuensis, and L. mtoewaate, most of which are found in and around the Itombwe Plateau in Democratic Republic of the Congo (DRC). We sampled 90 individuals of Leptopelis from multiple localities in DRC, Uganda, Rwanda and Burundi. We employed concatenated gene-tree analyses, coalescent species-tree analyses, and divergence dating approaches to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of two mitochondrial (16S and cyt b) and one nuclear gene (RAG1). All analyses revealed several cryptic lineages within the genus, suggesting that a revision of AR Leptopelis taxonomy is needed.


Assuntos
Anuros/classificação , Evolução Biológica , Filogenia , África Oriental , Animais , Teorema de Bayes , Biodiversidade , DNA Mitocondrial/genética , República Democrática do Congo , Ecossistema , Funções Verossimilhança , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
16.
Biol Lett ; 10(11): 20140811, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25376805

RESUMO

Compared with other African apes, eastern gorillas (Gorilla beringei) have been little studied genetically. We used analysis of autosomal DNA genotypes obtained from non-invasively collected faecal samples to estimate the evolutionary histories of the two extant mountain gorilla populations and the closely related eastern lowland gorillas. Our results suggest that eastern lowland gorillas and mountain gorillas split beginning some 10 000 years ago, followed 5000 years ago by the split of the two mountain gorilla populations of Bwindi Impenetrable National Park and the Virungas Massif. All three populations have decreased in effective population size, with particularly substantial 10-fold decreases for the mountain gorillas. These dynamics probably reflect responses to habitat changes resulting from climate fluctuations over the past 20 000 years as well as increasing human influence in this densely populated region in the last several thousand years.


Assuntos
Evolução Molecular , Variação Genética , Genótipo , Gorilla gorilla/genética , Repetições de Microssatélites , Animais , Teorema de Bayes , República Democrática do Congo , Fezes/química , Densidade Demográfica , Ruanda , Uganda
17.
Zootaxa ; 3731: 473-94, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25277586

RESUMO

We examine the systematics of multiple populations of the Albertine Rift endemic amphibian Hyperolius castaneus, which currently incorporates four subspecies. Standard morphometric data were analyzed with principal components analyses and analyses of covariance. Phylogenetic analyses of two mitochondrial (16S, cyt b) and one nuclear (RAG1) genes were analyzed from 41 samples representing three subspecies. Results indicated some significant morphometric differences between the nominate subspecies H. c. castaneus and the Itombwe Plateau subspecies H. c. constellatus, and phylogenetic analyses of molecular data recovered these taxa as reciprocally monophyletic groups. We recognize these two allopatric populations as recently diverged, but distinct species, H. castaneus and H. constellatus. The subspecies H. c. submarginatus from the Kabobo Plateau is transferred to the synonymy of H. constellatus, but the status of the unsampled subspecies H. c. rhodogaster, described from mid-elevations of the western Itombwe Plateau, remains problematic. The phylogeographic pattern of our study resembles some, but not all, Albertine Rift vertebrates that have been examined with molecular data. Hyperolius constellatus is restricted to the Itombwe and Kabobo plateaus, which are of special conservation concern because of high levels of amphibian diversity and endemism, and multiple threats from deforestation, mining activities and road construction.


Assuntos
Anuros/classificação , Anuros/genética , Conservação dos Recursos Naturais , África Central , Animais , Anuros/fisiologia , Demografia , Filogenia , Filogeografia , Especificidade da Espécie
18.
Afr J Herpetol ; 61(2): 113-127, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23567891

RESUMO

Leptopelis fiziensis was described as a subspecies of L. modestus from specimens that were collected in 1956 in the region in and around Fizi, in present-day Democratic Republic of the Congo. We recently discovered L. fiziensis in transitional and montane forest near the type locality and the southeastern Itombwe Plateau, respectively. A phylogenetic analysis (16S mitochondrial sequence data) of these samples and other Leptopelis species recovered L. fiziensis as sister to L. karissimbensis with strong support, and rejected a close relationship between L. fiziensis and both topotypic L. modestus from Cameroon and L. mackayi from Kenya. Herein, we provide a detailed description of the morphometrics, colour pattern, male advertisement call and natural history of this poorly known species. At least one literature record of L. fiziensis from Tanzania has notable differences from our data, and requires further study to ascertain its taxonomic status.

19.
Zool J Linn Soc ; 163(3): 913-942, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22121299

RESUMO

Currently, four species of the lacertid lizard genus Adolfus are known from Central and East Africa. We sequenced up to 2,825 bp of two mitochondrial (16S and cyt b) and two nuclear (c-mos and RAG1) genes from 41 samples of Adolfus (representing every species), two species each of Gastropholis and Holaspis, and in separate analyses combined this data with GenBank sequences of all other Eremiadini genera and four Lacertini outgroups. Data from DNA sequences were analyzed with maximum parsimony (PAUP), maximum-likelihood (RAxML) and Bayesian inference (MrBayes) criteria. Results demonstrated that Adolfus is not monophyletic: A. africanus (type species), A. alleni and A. jacksoni are sister taxa, whereas A. vauereselli and a new species from the Itombwe Plateau of Democratic Republic of the Congo are in a separate lineage. Holaspis and Gastropholis were recovered in separate clades. Based on this molecular data, relatively substantial sequence divergence and multiple morphological differences, we describe a new genus of lacertid for the lineage including A. vauereselli and the new Itombwe species. The recognition of this new, endemic genus underscores the conservation importance of the Albertine Rift, especially the Itombwe Plateau, a unique region that is severely threatened by unchecked deforestation, mining and poaching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...