Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(11): e0238961, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33226984

RESUMO

Drug sensitivity prediction models for human cancer cell lines constitute important tools in identifying potential computational biomarkers for responsiveness in a pre-clinical setting. Integrating information derived from a range of heterogeneous data is crucial, but remains non-trivial, as differences in data structures may hinder fitting algorithms from assigning adequate weights to complementary information that is contained in distinct omics data. In order to counteract this effect that tends to lead to just one data type dominating supposedly multi-omics models, we developed a novel tool that enables users to train single-omics models separately in a first step and to integrate them into a multi-omics model in a second step. Extensive ablation studies are performed in order to facilitate an in-depth evaluation of the respective contributions of singular data types and of combinations thereof, effectively identifying redundancies and interdependencies between them. Moreover, the integration of the single-omics models is realized by a range of distinct classification algorithms, thus allowing for a performance comparison. Sets of molecular events and tissue types found to be related to significant shifts in drug sensitivity are returned to facilitate a comprehensive and straightforward analysis of potential computational biomarkers for drug responsiveness. Our two-step approach yields sets of actual multi-omics pan-cancer classification models that are highly predictive for a majority of drugs in the GDSC data base. In the context of targeted drugs with particular modes of action, its predictive performances compare favourably to those of classification models that incorporate multi-omics data in a simple one-step approach. Additionally, case studies demonstrate that it succeeds both in correctly identifying known key biomarkers for sensitivity towards specific drug compounds as well as in providing sets of potential candidates for additional computational biomarkers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Algoritmos , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Genômica/métodos , Humanos , Sensibilidade e Especificidade
2.
Bioinformatics ; 35(19): 3846-3848, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821320

RESUMO

SUMMARY: Translational models that utilize omics data generated in in vitro studies to predict the drug efficacy of anti-cancer compounds in patients are highly distinct, which complicates the benchmarking process for new computational approaches. In reaction to this, we introduce the uniFied translatiOnal dRug rESponsE prEdiction platform FORESEE, an open-source R-package. FORESEE not only provides a uniform data format for public cell line and patient datasets, but also establishes a standardized environment for drug response prediction pipelines, incorporating various state-of-the-art pre-processing methods, model training algorithms and validation techniques. The modular implementation of individual elements of the pipeline facilitates a straightforward development of combinatorial models, which can be used to re-evaluate and improve already existing pipelines as well as to develop new ones. AVAILABILITY AND IMPLEMENTATION: FORESEE is licensed under GNU General Public License v3.0 and available at https://github.com/JRC-COMBINE/FORESEE and https://doi.org/10.17605/OSF.IO/RF6QK, and provides vignettes for documentation and application both online and in the Supplementary Files 2 and 3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Algoritmos , Desenho de Fármacos , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...