Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 132(18): 6558-65, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20397704

RESUMO

Mesoporous materials are valuable supports for the immobilization of various molecular catalysts. Cases in which the performance of the catalyst improves after immobilization have seldom been reported, especially when it comes to enantioselective synthesis. Knowledge of how the presence of the support surface alters the properties of a bound catalyst is therefore very important. In the current article, a new periodically ordered mesoporous organosilica material (PMO) with walls exclusively made of a chiral building block is presented. The attachment of Al(III) as a Lewis acid center to the chiral group furnishes the material with catalytic activity, for instance, for the asymmetric carbonyl ene reaction. Thus, the presented materials are valuable model systems for studying the effect of the chiral surface and also neighboring groups attached to the silanol groups in the network. It is reported that surface-bound Al(III) exhibits significantly better performance (higher ee values) than an analogous molecular reference catalyst. Furthermore, it could be shown that the ee values increase even further when more bulky secondary groups are attached to the pore walls. Therefore, the main conclusion of the current report is that for cases in which steric conditions of a catalyst play a crucial role its immobilization inside a tailor-made mesoporous organosilica material is beneficial with respect to cooperative effects between the catalytic center and neighboring surface groups.


Assuntos
Nanoestruturas/química , Alumínio/química , Catálise , Espectroscopia de Ressonância Magnética , Porosidade , Dióxido de Silício/química , Estereoisomerismo , Especificidade por Substrato , Propriedades de Superfície , Temperatura
3.
Langmuir ; 26(9): 6583-92, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20201568

RESUMO

Modified periodically ordered mesoporous organosilica materials were prepared starting from a recently introduced type of sol-gel precursor, containing both organic moieties and hydrolyzable Si-OR groups. In order to thoroughly characterize the mesoporosity and its accessibility, different probe gases were used in conventional gas adsorption experiments. Furthermore, in situ small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) were applied to study the mesoporosity and the sorption processes, taking advantage of scattering contrast matching conditions. Thereby, the materials were characterized not only by different probe molecules but also at different temperatures (nitrogen at 77 K, dibromomethane at 290 K and perfluoropentane at 276 K). The comparison between the standard and in situ SAXS/SANS adsorption experiments revealed valuable information about the porosity and microstructure of the materials. It is demonstrated that the organic moieties are homogeneously distributed; that is, they do not phase-separate from silica on the nanometer scale.

5.
Chemistry ; 14(32): 9816-29, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18655089

RESUMO

The everyday routine of most chemists is dictated by large numbers. The chemical rules for ensembles of molar size (N approximately N(A)=6.022 x 10(23)) are well known and can be understood in most cases by using Boltzmann distribution. It is an interesting question how a small ensemble of a chemical system behaves and if it differs from the respective large-ensemble counterpart. The experimental approach presented in the current paper involves the division of a macroscopic volume into compartments that contain only a small number of reactants. The compartments represent the pores of tailor-made nanoporous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...