Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 22(4): 214-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26939541

RESUMO

Antimicrobial peptides (AMPs) are components of the innate immune system and may be potential alternatives to conventional antibiotics because they exhibit broad-spectrum antimicrobial activity. The AMP cecropin P1 (CP1), isolated from nematodes found in the stomachs of pigs, is known to exhibit antimicrobial activity against Gram-negative bacteria. In this study, we investigated the interaction between CP1 and lipopolysaccharide (LPS), which is the main component of the outer membrane of Gram-negative bacteria, using circular dichroism (CD) and nuclear magnetic resonance (NMR). CD results showed that CP1 formed an α-helical structure in a solution containing LPS. For NMR experiments, we expressed (15) N-labeled and (13) C-labeled CP1 in bacterial cells and successfully assigned almost all backbone and side-chain proton resonance peaks of CP1 in water for transferred nuclear Overhauser effect (Tr-NOE) experiments in LPS. We performed (15) N-edited and (13) C-edited Tr-NOE spectroscopy for CP1 bound to LPS. Tr-NOE peaks were observed at the only C-terminal region of CP1 in LPS. The results of structure calculation indicated that the C-terminal region (Lys15-Gly29) formed the well-defined α-helical structure in LPS. Finally, the docking study revealed that Lys15/Lys16 interacted with phosphate at glucosamine I via an electrostatic interaction and that Ile22/Ile26 was in close proximity with the acyl chain of lipid A.


Assuntos
Antibacterianos/química , Lipopolissacarídeos/química , Peptídeos/química , Antibacterianos/farmacologia , Configuração de Carboidratos , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/farmacologia , Ligação Proteica , Estrutura Secundária de Proteína
2.
Biochim Biophys Acta ; 1844(3): 527-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389234

RESUMO

Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria and is the very first site of interactions with antimicrobial peptides (AMPs). In order to gain better insight into the interaction between LPS and AMPs, we determined the structure of tachyplesin I (TP I), an antimicrobial peptide derived from horseshoe crab, in its bound state with LPS and proposed the complex structure of TP I and LPS using a docking program. CD and NMR measurements revealed that binding to LPS slightly extends the two ß-strands of TP I and stabilizes the whole structure of TP I. The fluorescence wavelength of an intrinsic tryptophan of TP I and fluorescence quenching in the presence or absence of LPS indicated that a tryptophan residue is incorporated into the hydrophobic environment of LPS. Finally, we succeeded in proposing a structural model for the complex of TP I and LPS by using a docking program. The calculated model structure suggested that the cationic residues of TP I interact with phosphate groups and saccharides of LPS, whereas hydrophobic residues interact with the acyl chains of LPS.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Ligação a DNA/química , Lipopolissacarídeos/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Caranguejos Ferradura , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...