Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 218(Pt 13): 2075-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964423

RESUMO

Muscle produces force by forming cross-bridges, using energy released from ATP. While the magnitude and duration of force production primarily determine the energy requirement, nearly a century ago Fenn observed that muscle shortening or lengthening influenced energetic cost of contraction. When work is done by the muscle, the energy cost is increased and when work is done on the muscle the energy cost is reduced. However, the magnitude of the 'Fenn effect' and its mirror ('negative Fenn effect') have not been quantitatively resolved. We describe a new technique coupling magnetic resonance spectroscopy with an in vivo force clamp that can directly quantify the Fenn effect [E=I+W, energy liberated (E) equals the energy cost of isometric force production (I) plus the work done (W)] and the negative Fenn effect (E=I-W) for one muscle, the first dorsal interosseous (FDI). ATP cost was measured during a series of contractions, each of which occurred at a constant force and for a constant duration, thus constant force-time integral (FTI). In all subjects, as the FTI increased with load, there was a proportional linear increase in energy cost. In addition, the cost of producing force greatly increased when the muscle shortened, and was slightly reduced during lengthening contraction. These results, though limited to a single muscle, contraction velocity and muscle length change, do quantitatively support the Fenn effect. We speculate that they also suggest that an elastic element within the FDI muscle functions to preserve the force generated within the cross-bridges.


Assuntos
Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade
2.
J Exp Biol ; 214(Pt 16): 2649-53, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21795559

RESUMO

Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.


Assuntos
Músculos/fisiologia , Elasticidade/fisiologia , Metabolismo Energético/fisiologia , Acoplamento Excitação-Contração/fisiologia , Humanos
4.
J Physiol ; 588(Pt 11): 1961-83, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20308252

RESUMO

Rates of ATPase and glycolysis are several times faster in actively contracting mouse extensor digitorum longus muscle (EDL) than soleus (SOL), but we find these rates are not distinguishable at rest. We used a transient anoxic perturbation of steady state energy balance to decrease phosphocreatine (PCr) reversibly and to measure the rates of ATPase and of lactate production without muscle activation or contraction. The rate of glycolytic ATP synthesis is less than the ATPase rate, accounting for the continual PCr decrease during anoxia in both muscles. We fitted a mathematical model validated with properties of enzymes and solutes measured in vitro and appropriate for the transient perturbation of these muscles to experimental data to test whether the model accounts for the results. Simulations showed equal rates of ATPase and lactate production in both muscles. ATPase controls glycolytic flux by feedback from its products. Adenylate kinase function is critical because a rise in [AMP] is necessary to activate glycogen phosphorylase. ATPase is the primary source of H+ production. The sum of contributions of the 13 reactions of the glycogenolytic and glycolytic network to total proton load is negligible. The stoichiometry of lactate and H+ production is near unity. These results identify a default state of energy metabolism for resting muscle in which there is no difference in the metabolic phenotype of EDL and SOL. Therefore, additional control mechanisms, involving higher ATPase flux and [Ca2+], must exist to explain the well-known difference in glycolytic rates in fast-twitch and slow-twitch muscles in actively contracting muscle.


Assuntos
Adenosina Trifosfatases/metabolismo , Glicólise/fisiologia , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Difosfato de Adenosina/metabolismo , Aerobiose , Algoritmos , Animais , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Dióxido de Carbono/metabolismo , Simulação por Computador , Hidrogênio/metabolismo , Hipóxia/enzimologia , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/enzimologia , Consumo de Oxigênio/fisiologia , Fenótipo , Fosfocreatina/metabolismo , Fosforilase b/metabolismo
5.
J Appl Physiol (1985) ; 108(6): 1479-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20133437

RESUMO

The link between lactate generation and cellular acidosis has been questioned based on the possibility of H+ generation, independent of lactate production during glycolysis under physiological conditions. Here we test whether glycolytic H+ generation matches lactate production over a physiological pH and lactate range using ischemia applied to the hindlimb of a mouse. We measured the H+ generation and ATP level in vivo using 31P-magnetic resonance spectroscopy and chemically determined intracellular lactate level in the hindlimb muscles. No significant change was found in ATP content by chemical analysis (P>0.1), in agreement with the stoichiometric decline in phosphocreatine (20.2+/-1.2 mM) vs. rise in Pi (18.7+/-2.0 mM), as measured by 31P-magnetic resonance spectroscopy. A substantial drop in pH from 7.0 to 6.7 and lactate accumulation to 25 mM were found during 25 min of ischemia. The rise in H+ generation closely agreed with the accumulation of lactate, as shown by a close correlation with a slope near identity (0.98; r2=0.86). This agreement between glycolytic H+ production and elevation of lactate is confirmed by an analysis of the underlying reactions involved in glycolysis in vivo and supports the concept of lactic acidosis under conditions that substantially elevate lactate and drop pH. However, this link is expected to fail with conditions that deplete phosphocreatine, leading to net ATP hydrolysis and nonglycolytic H+ generation. Thus both direct measurements and an analysis of the stoichiometry of glycolysis in vivo support lactate acidosis as a robust concept for physiological conditions of the muscle cell.


Assuntos
Acidose Láctica/metabolismo , Isquemia/metabolismo , Ácido Láctico/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Animais , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Músculo Esquelético/química
6.
PLoS One ; 5(12): e15166, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203385

RESUMO

Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Trifosfato de Adenosina/química , Calibragem , Humanos , Modelos Biológicos , Modelos Estatísticos , Músculo Esquelético/metabolismo , Imagens de Fantasmas , Fosfatos/química , Fósforo/química , Reprodutibilidade dos Testes
7.
Mol Ther ; 18(3): 617-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20040912

RESUMO

We previously demonstrated that direct intramuscular injection of rAAV2 or rAAV6 in wild-type dogs resulted in robust T-cell responses to viral capsid proteins, and others have shown that cellular immunity to adeno-associated virus (AAV) capsid proteins coincided with liver toxicity and elimination of transgene expression in a human trial of hemophilia B. Here, we show that the heparin-binding ability of a given AAV serotype does not determine the induction of T-cell responses following intramuscular injection in dogs, and identify multiple epitopes in the AAV capsid protein that are recognized by T cells elicited by AAV injection. We also demonstrate that noninvasive magnetic resonance imaging (MRI) can accurately detect local inflammatory responses following intramuscular rAAV injection in dogs. These studies suggest that pseudotyping rAAV vectors to remove heparin-binding activity will not be sufficient to abrogate immunogenicity, and validate the utility of enzyme-linked immunosorbent spot (ELISpot) assay and MRI for monitoring immune and inflammatory responses following intramuscular injection of rAAV vectors in preclinical studies in dogs. These assays should be incorporated into future human clinical trials of AAV gene therapy to monitor immune responses.


Assuntos
Dependovirus/metabolismo , Terapia Genética/métodos , Músculos/metabolismo , Animais , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/química , Proteoglicanas de Heparan Sulfato/química , Heparina/metabolismo , Sistema Imunitário/metabolismo , Inflamação , Imageamento por Ressonância Magnética/métodos , Microscopia de Fluorescência/métodos , Músculos/patologia , Peptídeos/química , Linfócitos T/imunologia
9.
Methods Enzymol ; 454: 29-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19216922

RESUMO

The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H(+), Mg(2+), K(+), and Ca(2+). These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework.


Assuntos
Bioquímica/métodos , Cinética , Modelos Biológicos , Transdução de Sinais/fisiologia , Termodinâmica
10.
J Magn Reson ; 194(1): 67-75, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18595750

RESUMO

Conversion of MR signals into units of metabolite concentration requires a very high level of diligence to account for the numerous parameters and transformations that affect the proportionality between the quantity of excited nuclei in the acquisition volume and the integrated area of the corresponding peak in the spectrum. We describe a method that eases this burden with respect to the transformations that occur during and following data acquisition. The conceptual approach is similar to the ERETIC method, which uses a pre-calibrated, artificial reference signal as a calibration factor to accomplish the conversion. The distinguishing feature of our method is that the artificial signal is introduced strictly via induction, rather than radiation. We tested a prototype probe that includes a second RF coil rigidly positioned close to the receive coil so that there was constant mutual inductance between them. The artificial signal was transmitted through the second RF coil and acquired by the receive coil in parallel with the real signal. Our results demonstrate that the calibration factor is immune to changes in sample resistance. This is a key advantage because it removes the cumbersome requirement that coil loading conditions be the same for the calibration sample as for experimental samples. The method should be adaptable to human studies and could allow more practical and accurate quantification of metabolite content.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Physiol ; 586(7): 1993-2002, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18238810

RESUMO

During working contractions, chemical energy in the form of ATP is converted to external work. The efficiency of this conversion, called 'contraction coupling efficiency', is calculated by the ratio of work output to energy input from ATP splitting. Experiments on isolated muscles and permeabilized fibres show the efficiency of this conversion has a wide range, 0.2-0.7. We measured the work output in contractions of a single human hand muscle in vivo and of the ATP cost of that work to calculate the contraction coupling efficiency of the muscle. Five subjects performed six bouts of rapid voluntary contractions every 1.5 s for 42 s (28 contractions, each with time to peak force < 150 ms). The bouts encompassed a 7-fold range of workloads. The ATP cost during work was quantified by measuring the extent of chemical changes within the muscle from (31)P magnetic resonance spectra. Contraction coupling efficiency was determined as the slope of paired measurements of work output and ATP cost at the five graded work loads. The results show that 0.68 of the chemical energy available from ATP splitting was converted to external work output. A plausible mechanism to account for this high value is a substantially lower efficiency for mitochondrial ATP synthesis. The method described here can be used to analyse changes in the overall efficiency determined from oxygen consumption during exercise that can occur in disease or with age, and to test the hypothesis that such changes are due to reduced contraction coupling efficiency.


Assuntos
Trifosfato de Adenosina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Contração Isotônica/fisiologia , Masculino , Pessoa de Meia-Idade , Fosfocreatina/metabolismo
12.
Appl Spectrosc ; 61(9): 978-85, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17910795

RESUMO

Optical spectra were acquired from myoglobin and hemoglobin solutions and from the tibialis anterior muscle of Sprague-Dawley rats in the visible region (515 to 660 nm). Validation studies were performed on the in vitro spectra to demonstrate that partial least squares analysis of second-derivative spectra yields accurate measurements of myoglobin saturation in the presence of varying hemoglobin concentrations and saturations. When hemoglobin concentrations were varied between 0.25 and 4 times that of myoglobin, myoglobin saturations were measured with a root mean squared error (RMSE) of 4.9% (n = 56) over the full range from 0 to 1. Myoglobin saturations were also shown to be largely unaffected by hemoglobin saturation. RMSE values of only 1.7% (n = 77) were found when hemoglobin saturations were varied independently from myoglobin saturations. These in vitro validation studies represent the most complete and rigorous done to date using partial least squares analysis on myoglobin and hemoglobin spectra. Analysis of reflectance spectra from the rat hind limb yielded accurate measures of volume-averaged myoglobin fractional saturation in the presence of hemoglobin in vivo. Hemodilution showed that myoglobin fractional saturation measurements in the rat leg are not sensitive to changes in hematocrit, thereby confirming the results from solutions in vitro. Decreases in optical density of 11.3 +/- 3.0% (n = 3) were achieved while myoglobin saturation decreased by only 3.1 +/- 3.8%. Myoglobin saturation was significantly increased when the fraction of inspired O(2) was increased, showing that manipulations of myoglobin saturation are detectable and that myoglobin is not fully saturated in resting muscle. Together, these in vitro and in vivo studies show that cellular oxygenation derived from myoglobin fractional saturation can be measured accurately with little cross-talk from hemoglobin in the visible wavelength region, thereby extending optical spectroscopic studies of cellular and vascular oxygenation beyond the near-infrared regions previously studied.


Assuntos
Hemoglobinas/metabolismo , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Oximetria/métodos , Oxigênio/metabolismo , Análise Espectral/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Magn Reson Imaging ; 25(5): 1021-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17457811

RESUMO

PURPOSE: To develop a noninvasive protocol for measuring local perfusion and metabolic demand in muscle tissue with sufficient sensitivity and time resolution to monitor kinetics at the onset of low-level exercise and during recovery. MATERIALS AND METHODS: Capillary-level perfusion, the critical factor that determines oxygen and substrate delivery to active muscle, was measured by an arterial spin labeling (ASL) technique optimized for skeletal muscle. Phosphocreatine (PCr) kinetics, which signal the flux of oxidative phosphorylation, were measured by (31)P MR spectroscopy. Perfusion and PCr measurements were made in parallel studies before, during, and after three different intensities of low-level, stimulated exercise in rat hind limb. RESULTS: The data reveal close coupling between the perfusion response and PCr changes. The onset and recovery time constants for PCr changes were independent of contractile force over the range of forces studied. Perfusion time constants during both onset of exercise and recovery tended to increase with contractile force. CONCLUSION: These results demonstrate that the protocol implemented can be useful for probing the mechanisms that control skeletal muscle blood flow, the physiological limits to muscle performance, and the causes for the attenuated exercise-induced hyperemia observed in disease states.


Assuntos
Membro Posterior/irrigação sanguínea , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Esforço Físico , Animais , Masculino , Ratos , Ratos Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 104(3): 1057-62, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17215370

RESUMO

Faster aging is predicted in more active tissues and animals because of greater reactive oxygen species generation. Yet age-related cell loss is greater in less active cell types, such as type II muscle fibers. Mitochondrial uncoupling has been proposed as a mechanism that reduces reactive oxygen species production and could account for this paradox between longevity and activity. We distinguished these hypotheses by using innovative optical and magnetic resonance spectroscopic methods applied to noninvasively measured ATP synthesis and O(2) uptake in vivo in human muscle. Here we show that mitochondrial function is unchanged with age in mildly uncoupled tibialis anterior muscle (75% type I) despite a high respiratory rate in adults. In contrast, substantial uncoupling and loss of cellular [ATP] indicative of mitochondrial dysfunction with age was found in the lower respiring and well coupled first dorsal interosseus (43-50% type II) of the same subjects. These results reject respiration rate as the sole factor impacting the tempo of cellular aging. Instead, they support mild uncoupling as a mechanism protecting mitochondrial function and contributing to the paradoxical longevity of the most active muscle fibers.


Assuntos
Senescência Celular/fisiologia , Mitocôndrias Musculares/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Fosfatos/metabolismo
15.
Biophys J ; 91(4): 1264-87, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16617075

RESUMO

Cellular metabolites are moieties defined by their specific binding constants to H+, Mg2+, and K+ or anions without ligands. As a consequence, every biochemical reaction in the cytoplasm has an associated proton stoichiometry that is generally noninteger- and pH-dependent. Therefore, with metabolic flux, pH is altered in a medium with finite buffer capacity. Apparent equilibrium constants and maximum enzyme velocities, which are functions of pH, are also altered. We augmented an earlier mathematical model of skeletal muscle glycogenolysis with pH-dependent enzyme kinetics and reaction equilibria to compute the time course of pH changes. Analysis shows that kinetics and final equilibrium states of the closed system are highly constrained by the pH-dependent parameters. This kinetic model of glycogenolysis, coupled to creatine kinase and adenylate kinase, simulated published experiments made with a cell-free enzyme mixture to reconstitute the network and to synthesize PCr and lactate in vitro. Using the enzyme kinetic and thermodynamic data in the literature, the simulations required minimal adjustments of parameters to describe the data. These results show that incorporation of appropriate physical chemistry of the reactions with accurate kinetic modeling gives a reasonable simulation of experimental data and is necessary for a physically correct representation of the metabolic network. The approach is general for modeling metabolic networks beyond the specific pathway and conditions presented here.


Assuntos
Glicogenólise/fisiologia , Modelos Biológicos , Modelos Químicos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Animais , Simulação por Computador , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Taxa de Depuração Metabólica , Modelos Moleculares , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo
17.
NMR Biomed ; 18(5): 322-30, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15884098

RESUMO

Arterial spin labeling (ASL) techniques are now recognized as valid tools for providing accurate measurements of cerebral and cardiac perfusion. The labeling process used with most ASL techniques creates two problems, magnetization transfer (MT) effects and arterial transit time effects, that require compensation. The compensation process limits time resolution and hinders absolute quantification. MT effects are particularly problematic in skeletal muscle because they are large and change rapidly during exercise. The protocol presented here was developed specifically for quantification of perfusion in exercising skeletal muscle. The ASL technique that was implemented, FAWSETS, eliminates MT effects and arterial transit times. Localized, single-voxel perfusion measurements were acquired from rat hind limbs at rest, during ischemia and during three different levels of stimulated exercise. The results demonstrate sufficient sensitivity to determine the time constants for perfusion changes at onset of, and during recovery from, exercise and to distinguish the differences in the amplitude of the perfusion response to different levels of exercise. Additional measurements were conducted to demonstrate insensitivity to MT effects. The exercise protocol is easily adaptable to phosphorous magnetic resonance measurements, allowing the possibility to acquire local measurements of perfusion and metabolism from the same tissue in future experiments.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Contração Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Animais , Estimulação Elétrica , Teste de Esforço , Membro Posterior/fisiologia , Masculino , Músculo Esquelético/inervação , Ratos , Ratos Sprague-Dawley , Marcadores de Spin
18.
Ann Biomed Eng ; 33(3): 343-55, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15868725

RESUMO

A deconvolution algorithm, based on a Bayesian statistical framework and smoothing spline technique, is applied to reconstructing input functions from noisy measurements in biological systems. Deconvolution is usually ill-posed. However, placing a Bayesian prior distribution on the input function can make the problem well-posed. Using this algorithm and a computational model of diffusional oxygen transport in an approximately cylindrical muscle (about 0.5-mm diameter and 10-mm long mouse leg muscle), the time course of muscle oxygen uptake and mitochondrial oxygen consumption, both during isometric twitch contractions (at various frequencies) and the recovery period, is estimated from polarographic measurements of oxygen concentration on the muscle surface. An important feature of our experimental protocol is the availability of data for the apparatus characteristics. From these time courses, the actual mitochondrial consumption rates during resting and exercise states can be estimated. Mitochondrial oxygen consumption rate increased during stimulation to a maximum steady state value approximately five times of the resting value of 0.63 nmol/s/g wet weight for the stimulation conditions studied. Diffusion slowed the kinetic responses to the contraction but not the steady state fluxes during the stimulation interval.


Assuntos
Mitocôndrias Musculares/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Simulação por Computador , Técnicas In Vitro , Camundongos
19.
NMR Biomed ; 18(4): 226-34, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15674816

RESUMO

This work discusses the strengths, limitations and validity of a novel arterial spin labeling technique when used specifically to measure perfusion in limb skeletal muscle. The technique, flow-driven arterial water stimulation with elimination of tissue signal (FAWSETS), offers several advantages over existing arterial spin labeling techniques. The primary goal of this study was to determine the perfusion signal response to changes in net hind limb flow that were independently verifiable. The range of perfusate flow was relevant to skeletal muscle during mild to moderate exercise. Localized, single voxel measurements were acquired from a 5 mm-thick slice in the isolated perfused rat hind limb at variable net flow rates. The results show that the perfusion signal is linearly proportional to net hind limb flow with a correlation coefficient of 0.974 (p = 0.0013). FAWSETS is especially well suited for studies of skeletal muscle perfusion, where it eliminates the need to compensate for magnetization transfer and arterial transit time effects. A conceptual discussion of the basic principles underlying these advantages is presented.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Reologia/métodos , Animais , Artérias/fisiologia , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Água/metabolismo
20.
Am J Physiol Endocrinol Metab ; 284(4): E655-62, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12626321

RESUMO

This study asked whether the energetic properties of muscles are changed by insulin-dependent diabetes mellitus (or type 1 diabetes), as occurs in obesity and type 2 diabetes. We used (31)P magnetic resonance spectroscopy to measure glycolytic flux, oxidative flux, and contractile cost in the ankle dorsiflexor muscles of 10 men with well-managed type 1 diabetes and 10 age- and activity-matched control subjects. Each subject performed sustained isometric muscle contractions lasting 30 and 120 s while attempting to maintain 70-75% of maximal voluntary contraction force. An altered glycolytic flux in type 1 diabetic subjects relative to control subjects was apparent from significant differences in pH in muscle at rest and at the end of the 120-s bout. Glycolytic flux during exercise began earlier and reached a higher peak rate in diabetic patients than in control subjects. A reduced oxidative capacity in the diabetic patients' muscles was evident from a significantly slower phosphocreatine recovery from a 30-s exercise bout. Our findings represent the first characterization of the energetic properties of muscle from type 1 diabetic patients. The observed changes in glycolytic and oxidative fluxes suggest a diabetes-induced shift in the metabolic profile of muscle, consistent with studies of obesity and type 2 diabetes that point to common muscle adaptations in these diseases.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Adulto , Glicólise/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Contração Muscular/fisiologia , Fosforilação Oxidativa , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...