Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ross Fiziol Zh Im I M Sechenova ; 87(9): 1184-92, 2001 Sep.
Artigo em Russo | MEDLINE | ID: mdl-11763531

RESUMO

Rats were subjected to intermittent water restriction from the 1st day of pregnancy until delivery. Water, sodium, and potassium contents in the liver, brain, skeletal muscles, heart, kidneys, and subcutaneous fat tissue were determined in the litter. Water and sodium contents in 30-day old rats of the 1st and 2nd generation were found to be comparable to the control values. Water loading resulted in weaker diuretic responses in the former rats as compared with the control. No differences in the renal response were revealed in adult rats.


Assuntos
Rim/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Privação de Água , Equilíbrio Hidroeletrolítico , Animais , Animais Recém-Nascidos , Diurese , Feminino , Testes de Função Renal , Especificidade de Órgãos , Potássio/análise , Gravidez , Ratos , Ratos Wistar , Sódio/análise , Água/análise
2.
Mol Microbiol ; 38(4): 854-66, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11115119

RESUMO

We demonstrate here that the assembly of the RNase E-based degradosome of Escherichia coli is not required for normal mRNA decay in vivo. In contrast, deletion of the arginine-rich RNA binding site (ARRBS) from the RNase E protein slightly impairs mRNA decay. When both the degradosome scaffold region and the ARRBS are missing, mRNA decay is dramatically slowed, but 9S rRNA processing is almost normal. An extensive RNase E truncation mutation (rnedelta610) had a more pronounced mRNA decay defect at 37 degrees C than the temperature-sensitive rne-1 allele at 44 degrees C. Taken together, these data suggest that the inviability associated with inactivation of RNase E is not related to defects in either mRNA decay or rRNA processing.


Assuntos
Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
3.
Proc Natl Acad Sci U S A ; 97(22): 11966-71, 2000 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-11035800

RESUMO

In vitro, polynucleotide phosphorylase of Escherichia coli can both synthesize RNA by using nucleotide diphosphates as precursors and exonucleolytically degrade RNA in the presence of inorganic phosphate. However, because of the high in vivo concentration of inorganic phosphate in exponentially growing cells, it has been assumed that the enzyme works exclusively as an exonuclease. Here we demonstrate that, contrary to this prediction, polynucleotide phosphorylase not only synthesizes long, highly heteropolymeric tails in vivo, but also accounts for all of the observed residual polyadenylylation in poly(A) polymerase I deficient strains. In addition, the enzyme is responsible for adding the C and U residues that are found in poly(A) tails in exponentially growing cultures of wild type E. coli.


Assuntos
Escherichia coli/enzimologia , Exodesoxirribonucleases/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Sequência de Bases , Primers do DNA , Exodesoxirribonuclease V , Mutação , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Cell ; 6(2): 349-60, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10983982

RESUMO

Structural, biochemical, and genetic techniques were applied to investigate the function of FtsJ, a recently identified heat shock protein. FtsJ is well conserved, from bacteria to humans. The 1.5 A crystal structure of FtsJ in complex with its cofactor S-adenosylmethionine revealed that FtsJ has a methyltransferase fold. The molecular surface of FtsJ exposes a putative nucleic acid binding groove composed of highly conserved, positively charged residues. Substrate analysis showed that FtsJ methylates 23S rRNA within 50S ribosomal subunits in vitro and in vivo. Null mutations in ftsJ show a dramatically altered ribosome profile, a severe growth disadvantage, and a temperature-sensitive phenotype. Our results reveal an unexpected link between the heat shock response and RNA metabolism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Caenorhabditis elegans/genética , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Mathanococcus/genética , Metilação , Metiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Estrutura Secundária de Proteína , RNA Ribossômico 23S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , S-Adenosilmetionina/metabolismo , Schizosaccharomyces/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Mol Microbiol ; 36(4): 982-94, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10844684

RESUMO

Poly(A) tails in Escherichia coli are hypothesized to provide unstructured single-stranded substrates that facilitate the degradation of mRNAs by ribonucleases. Here, we have investigated the role that such nucleases play in modulating polyadenylation in vivo by measuring total poly(A) levels, polyadenylation of specific transcripts, growth rates and cell viabilities in strains containing various amounts of poly(A) polymerase I (PAP I), polynucleotide phosphorylase (PNPase), RNase II and RNase E. The results demonstrate that both PNPase and RNase II are directly involved in regulating total in vivo poly(A) levels. RNase II is primarily responsible for degrading poly(A) tails associated with 23S rRNA, whereas PNPase is more effective in modulating the polyadenylation of the lpp and 16S rRNA transcripts. In contrast, RNase E appears to affect poly(A) levels indirectly through the generation of new 3' termini that serve as substrates for PAP I. In addition, whereas excess PNPase suppresses polyadenylation by more than 70%, the toxicity associated with increased poly(A) levels is not reduced. Conversely, toxicity is significantly reduced in the presence of excess RNase II. Overproduction of RNase E leads to increased polyadenylation and no reduction in toxicity.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Exorribonucleases/metabolismo , Poli A/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Escherichia coli/genética , RNA Mensageiro
6.
Mol Microbiol ; 34(5): 1094-108, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10594833

RESUMO

To help understand the role of polyadenylation in Escherichia coli RNA metabolism, we constructed an IPTG-inducible pcnB [poly(A) polymerase I, PAP I] containing plasmid that permitted us to vary poly(A) levels without affecting cell growth or viability. Increased polyadenylation led to a decrease in the half-life of total pulse-labelled RNA along with decreased half-lives of the rpsO, trxA, lpp and ompA transcripts. In contrast, the transcripts for rne (RNase E) and pnp (polynucleotide phosphorylase, PNPase), enzymes involved in mRNA decay, were stabilized. rnb (RNase II) and rnc (RNase III) transcript levels were unaffected in the presence of increased polyadenylation. Long-term overproduction of PAP I led to slower growth and irreversible cell death. Differential display analysis showed that new RNA species were being polyadenylated after PAP I induction, including the mature 3'-terminus of 23S rRNA, a site that was not tailed in wild-type cells. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated an almost 20-fold variation in the level of polyadenylation among three different transcripts and that PAP I accounted for between 94% and 98.6% of their poly(A) tails. Cloning and sequencing of cDNAs derived from lpp, 23S and 16S rRNA revealed that, during exponential growth, C and U residues were polymerized into poly(A) tails in a transcript-dependent manner.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/enzimologia , Polinucleotídeo Adenililtransferase/metabolismo , RNA Bacteriano/metabolismo , Southern Blotting , Contagem de Colônia Microbiana , Indução Enzimática , Escherichia coli/crescimento & desenvolvimento , Isopropiltiogalactosídeo/metabolismo , Óperon Lac/genética , Plasmídeos/genética , Poli A/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleases/metabolismo , Transcrição Gênica
7.
Mol Microbiol ; 34(5): 1109-19, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10594834

RESUMO

As extracts of poly(A) polymerase I (PAP I) deficient strains of Escherichia coli appeared to contain considerable residual polyadenylating activity, efforts were undertaken to identify a second poly(A) polymerase. Recently, a gene (f310 ) encoding the putative second poly(A) polymerase was cloned and sequenced. Here we have tested the ability of the F310 protein to add poly(A) tails in vivo by measuring total poly(A) levels in both f310 mutants and strains that overproduce F310. In addition, we have visualized poly(A) tails and examined ColE1 plasmid copy number in various genetic backgrounds. We also carried out direct biochemical measurements of AMP incorporation, using cell extracts after amplification of F310. All the data obtained indicate that F310 is not a poly(A) polymerase. Although the presence of two potential ATP binding domains in the F310 protein may account for its apparent ATP binding activity, its true biochemical function remains to be identified. In addition, we show that the f310 gene is transcribed, almost exclusively, during stationary phase from a sigmas promoter.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Mutação , Poli A/metabolismo , Polinucleotídeo Adenililtransferase/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Temperatura Alta , Dados de Sequência Molecular , Poli A/genética , Polinucleotídeo Adenililtransferase/química , Polinucleotídeo Adenililtransferase/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transcrição Gênica
8.
J Bacteriol ; 180(7): 1929-38, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9537394

RESUMO

The mrsC gene of Escherichia coli is required for mRNA turnover and cell growth, and strains containing the temperature-sensitive mrsC505 allele have longer half-lives than wild-type controls for total pulse-labeled and individual mRNAs (L. L. Granger et al., J. Bacteriol. 180:1920-1928, 1998). The cloned mrsC gene contains a long open reading frame beginning at an initiator UUG codon, confirmed by N-terminal amino acid sequencing, encoding a 70,996-Da protein with a consensus ATP-binding domain. mrsC is identical to the independently identified ftsH gene except for three additional amino acids at the N terminus (T. Tomoyasu et al., J. Bacteriol. 175:1344-1351, 1993). The purified protein had a Km of 28 microM for ATP and a Vmax of 21.2 nmol/microg/min. An amino-terminal glutathione S-transferase-MrsC fusion protein retained ATPase activity but was not biologically active. A glutamic acid replacement of the highly conserved lysine within the ATP-binding motif (mrsC201) abolished the complementation of the mrsC505 mutation, confirming that the ATPase activity is required for MrsC function in vivo. In addition, the mrsC505 allele conferred a temperature-sensitive HflB phenotype, while the hflB29 mutation promoted mRNA stability at both 30 and 44 degrees C, suggesting that the inviability associated with the mrsC505 allele is not related to the defect in mRNA decay. The data presented provide the first direct evidence for the involvement of a membrane-bound protein in mRNA decay in E. coli.


Assuntos
Adenosina Trifosfatases/genética , Alelos , Proteínas de Bactérias/genética , Endopeptidases/genética , Escherichia coli/genética , Genes Bacterianos , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , Proteases Dependentes de ATP , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Chaperonina 10/genética , Clonagem Molecular , Proteínas de Escherichia coli , Dados de Sequência Molecular , Mutação
9.
J Bacteriol ; 180(7): 1920-8, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9537393

RESUMO

We have identified a gene in Escherichia coli that is required for both the normal decay of mRNA and RNA synthesis. Originally designated mrsC (mRNA stability), the mrsC505 mutation described here is, in fact, an allele of the hflB/ftsH locus (R.-F. Wang et al., J. Bacteriol. 180:1929-1938, 1998). Strains carrying the thermosensitive mrsC505 allele stopped growing soon after the temperature was shifted to 44 degrees C but remained viable for several hours. Net RNA synthesis stopped within 20 min after the shift, while DNA and protein synthesis continued for over 60 min. At 44 degrees C, the half-life of total pulse-labeled RNA rose from 2.9 min in a wild-type strain to 5.9 min in the mrsC505 single mutant. In an rne-1 mrsC505 double mutant, the average half-life was 19.8 min. Inactivating mrsC significantly increased the half-lives of the trxA, cat, secG, and kan mRNAs, particularly in an mrsC505 pnp-7 rnb-500 rne-1 multiple mutant. In addition, Northern analysis showed dramatic stabilizations of full-length mRNAs in a variety of mrsC505 multiple mutants at 44 degrees C. These results suggest that MrsC, directly or indirectly, controls endonucleolytic processing of mRNAs that may be independent of the RNase E-PNPase-RhlB multiprotein complex.


Assuntos
Escherichia coli/genética , Genes Bacterianos , RNA Mensageiro/metabolismo , Northern Blotting , Divisão Celular , DNA Bacteriano/biossíntese , Escherichia coli/crescimento & desenvolvimento , RNA Bacteriano/biossíntese
10.
J Bacteriol ; 180(2): 377-87, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9440527

RESUMO

Using a combination of both ethyl methanesulfonate and site-directed mutagenesis, we have identified a region in DNA helicase II (UvrD) from Escherichia coli that is required for biological function but lies outside of any of the seven conserved motifs (T. C. Hodgman, Nature 333:22-23, 1988) associated with the superfamily of proteins of which it is a member. Located between amino acids 403 and 409, alterations in the amino acid sequence DDAAFER lead to both temperature-sensitive and dominant uvrD mutations. The uvrD300 (A406T) and uvrD301 (A406V) alleles produce UV sensitivity at 44 degrees C but do not affect sensitivity to methyl methanesulfonate (MMS). In contrast, the uvrD303 mutation (D403AD404A) causes increased sensitivity to both UV and MMS and is dominant to uvrD+ when present at six to eight copies per cell. Several of the alleles demonstrated a strong antimutator phenotype. In addition, conjugal recombination is reduced 10-fold in uvrD303 strains. Of all of the amino acid substitutions tested, only an alanine-to-serine change at position 406 (uvrD302) was neutral. To determine the biochemical basis for the observed phenotypes, we overexpressed and purified the UvrD303 protein from a uvrD delta294 deletion background and characterized its enzymatic activities. The highly unusual UvrD303 protein exhibits a higher specific activity for ATP hydrolysis than the wild-type control, while its Km for ATP binding remains unchanged. More importantly, the UvrD303 protein unwinds partial duplex DNA up to 10 times more efficiently than wild-type UvrD. The DNA binding affinities of the two proteins appear comparable. Based on these results, we propose that the region located between amino acids 403 and 409 serves to regulate the unwinding activity of DNA helicase II to provide the proper balance between speed and overall effectiveness in the various DNA repair systems in which the protein participates.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases , DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli , Metanossulfonato de Metila/farmacologia , Mutação , Recombinação Genética , Temperatura
11.
J Bacteriol ; 179(23): 7544-50, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9393722

RESUMO

There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited higher UV and methyl methanesulfonate sensitivity, increased rates of spontaneous mutagenesis, and elevated levels of homologous recombination, indicating defects in both the excision repair and mismatch repair pathways. In addition, we also changed the highly conserved tyrosine(600) in motif VI to phenylalanine (uvrD309, Y600F). This mutant displayed a moderate increase in UV sensitivity but a decrease in spontaneous mutation rate, suggesting that DNA helicase II may have different functions in the two DNA repair pathways. Furthermore, a mutation in domain IV (uvrD307, R284A) significantly reduced the viability of some E. coli K-12 strains at 30 degrees C but not at 37 degrees C. The implications of these observations are discussed.


Assuntos
Adenosina Trifosfatases/metabolismo , Sequência Conservada , DNA Helicases , Escherichia coli/enzimologia , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/efeitos da radiação , Sequência de Aminoácidos , Conjugação Genética , Análise Mutacional de DNA , Reparo do DNA/genética , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Metanossulfonato de Metila/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Recombinação Genética/genética , Raios Ultravioleta/efeitos adversos
12.
J Mol Biol ; 268(2): 261-72, 1997 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-9159469

RESUMO

Messenger RNA decay in Escherichia coli is slowed in pnp-7 (PNPase) rnb-500 (RNase II) rne-1(RNase E) multiple mutants. We have used Northern blots, S1 nuclease protection and primer extension analysis to map 18 endonucleolytic cleavage sites within the pyrF-orfF dicistronic transcript. Although examination of a total of 27 cleavage sites including those determined for the monocistronic trxA transcript revealed a complex pattern, the central four nucleotides within a cluster of 12 residues encompassing the cleavage sites showed a definite A/U preference. Also of interest was the processing of the dicistronic transcript to remove the downstream orfF sequence as a stable but untranslated RNA fragment. The data provide further support for the hypothesis that multiple decay pathways are involved in the decay of a single transcript. In particular, the pyrF-orfF transcript apparently can be degraded either in the 5' to 3' or the 3' to 5' direction. Our results are discussed in light of current models of mRNA decay involving polyadenylation and multiprotein decay complexes.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Endorribonucleases/metabolismo , Regulação Enzimológica da Expressão Gênica , Fases de Leitura Aberta , Orotidina-5'-Fosfato Descarboxilase/genética , Mapeamento por Restrição
13.
Proc Natl Acad Sci U S A ; 93(23): 12926-31, 1996 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-8975250

RESUMO

Using a novel Escherichia coli in vitro decay system in which polysomes are the source of both enzymes and mRNA, we demonstrate a requirement for poly(A) polymerase I (PAP I) in mRNA turnover. The in vitro decay of two different mRNAs (trxA and lpp) is triggered by the addition of ATP only when polysomes are prepared from s strain carrying the wild-type gene for PAP I (pcnB+). The relative decay rates of these two messages are similar in vitro and in vivo. Poly(A) tails are formed on both mRNAs, but no poly(A) are detected on the 3' end of mature 23S rRNA. The size distribution of poly(A) tails generated in vitro, averaging 50 nt in length, is comparable to that previously reported in vivo. PAP I activity is associated exclusively with the polysomes. Exogenously added PAP I does not restore mRNA decay to PAP I-polysomes, suggesting that, in vivo, PAP I may be part of a multiprotein complex. The potential of this in vitro system for analyzing mRNA decay in E. coli is discussed.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Lipoproteínas , Polinucleotídeo Adenililtransferase/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Escherichia coli/genética , Genes Bacterianos , Cinética , Poli A/análise , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/química , Ribonuclease H , Transcrição Gênica
14.
J Bacteriol ; 177(7): 1879-82, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7896715

RESUMO

Using a combination of biochemical, physical, and genetic techniques, we have shown that the umpA gene of Escherichia coli is allelic with the lgt (phosphatidylglycerol:prolipoprotein diacylglyceryl transferase) of Salmonella typhimurium. These genes are essential for the viability of the respective organism and exhibit 92.8% sequence identity at the amino acid level. In E. coli, lgt and thyA (thymidylate synthase) form an operon. Thymidylate synthase levels are regulated by transcription from the lgt promoter and by translational coupling.


Assuntos
Diglicerídeos/metabolismo , Escherichia coli/genética , Genes Bacterianos , Fosfatidilgliceróis/metabolismo , Biossíntese de Proteínas , Precursores de Proteínas/metabolismo , Timidilato Sintase/genética , Transferases/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Dados de Sequência Molecular , Timidilato Sintase/biossíntese
15.
Proc Natl Acad Sci U S A ; 92(6): 1807-11, 1995 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-7534403

RESUMO

As part of our genetic analysis of mRNA decay in Escherichia coli K-12, we examined the effect of the pcnB gene [encoding poly(A) polymerase I] on message stability. Eliminating poly(A) polymerase I (delta pcnB) dramatically stabilized the lpp, ompA, and trxA transcripts. The half-lives of individual mRNAs were increased in both a delta pcnB single mutant and a delta pcnB pnp-7 rnb-500 rne-1 multiple mutant. We also found mRNA decay intermediates in delta pcnB mutants that were not detected in control strains. By end-labeling total E. coli RNA with [32P]pCp and T4 RNA ligase and then digesting the RNA with RNase A and T1, we showed that many RNAs in a wild-type strain contained poly(A) tails ranging from 10 nt to > 50 nt long. When polynucleotide phosphorylase, RNase II, and RNase E were absent, the length (> 100 nt) and number (10- to 20-fold) of the poly(A) tails increased. After transcription initiation was stopped with rifampicin, polyadenylylation apparently continued. Deleting the structural gene for poly(A) polymerase I (pcnB) reduced the amount of 3'-terminal poly(A) sequences by > 90%. We propose a model for the role of polyadenylylation in mRNA decay.


Assuntos
Escherichia coli/metabolismo , Genes Bacterianos , Polinucleotídeo Adenililtransferase/biossíntese , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Northern Blotting , Expressão Gênica , Meia-Vida , Homeostase , Mutagênese , Poli A/análise , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Bacteriano/genética
16.
J Bacteriol ; 177(3): 502-7, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7836279

RESUMO

The Escherichia coli peptide methionine sulfoxide reductase gene (msrA) encodes a single-subunit polypeptide of 212 amino acid residues (M. A. Rahman, H. Nelson, H. Weissbach, and N. Brot, J. Biol. Chem. 267:15549-15551, 1992). RNA blot analysis showed that the gene is transcribed into an mRNA of about 850 nucleotides. The promoter region was characterized, and the transcription initiation site was identified by primer extension. The synthesis of the MsrA protein increased about threefold in a growth-phase-dependent fashion. In an attempt to define the in vivo role of msrA, a chromosomal disruption was constructed. This mutant was more sensitive to oxidative stress, suggesting that oxidation of methionine in proteins plays an important role in oxidative damage.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estresse Oxidativo , Oxirredutases/genética , Sequência de Bases , Escherichia coli/enzimologia , Metionina/metabolismo , Metionina Sulfóxido Redutases , Dados de Sequência Molecular , Mutação , Oxirredutases/fisiologia , RNA Mensageiro/análise
17.
Biochem Biophys Res Commun ; 198(2): 459-65, 1994 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-7905263

RESUMO

A second poly(A) polymerase (PAP II) has been identified in Escherichia coli using a strain carrying a deletion of pcnB (the structural gene for PAP I; Cao and Sarkar, 1992b) and pnp-7 (a null mutation in the structural gene for polynucleotide phosphorylase). While PAP I has a M(r) of 53,000, PAP II is a smaller protein with a native M(r)-35,000. PAP II differs from PAP I in preferring poly(A) over tRNA primers and being more thermolabile. The presence of multiple poly(A) polymerases in E. coli raises interesting questions regarding the role of polyadenylation in mRNA synthesis and decay.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/enzimologia , Polinucleotídeo Adenililtransferase/isolamento & purificação , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Poli A/análise , Polirribonucleotídeo Nucleotidiltransferase/deficiência , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
18.
J Bacteriol ; 175(4): 1043-52, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7679384

RESUMO

The degradation of individual mRNAs in Escherichia coli has been studied through the use of a multiple mutant carrying the pnp-7 (polynucleotide phosphorylase), rnb-500 (RNase II), and rne-1 (RNase E) alleles. In this triple mutant, discrete mRNA breakdown products are stabilized in vivo at the nonpermissive temperature (Arraiano, C. M., S. D. Yancey, and S. R. Kushner, J. Bacteriol. 170:4625-4633, 1988). In the case of thioredoxin (trxA) mRNA decay, degradation fragments accumulated at early times after a shift to the nonpermissive temperature. Using Northern (RNA) blots, S1 nuclease analysis, and primer extensions, we identified a series of specific endonucleolytic cleavage sites that occur throughout the transcript in both the triple mutant and a wild-type control. The implications of the complex decay patterns observed are discussed.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/metabolismo , Tiorredoxinas/genética , Sequência de Bases , Northern Blotting , Escherichia coli/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , RNA Bacteriano/metabolismo , Mapeamento por Restrição , Ribonucleases/metabolismo
19.
J Bacteriol ; 175(1): 229-39, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8416898

RESUMO

RNase III is an endonuclease involved in processing both rRNA and certain mRNAs. To help determine whether RNase III (rnc) is required for general mRNA turnover in Escherichia coli, we have created a deletion-insertion mutation (delta rnc-38) in the structural gene. In addition, a series of multiple mutant strains containing deficiencies in RNase II (rnb-500), polynucleotide phosphorylase (pnp-7 or pnp-200), RNase E (rne-1 or rne-3071), and RNase III (delta rnc-38) were constructed. The delta rnc-38 single mutant was viable and led to the accumulation of 30S rRNA precursors, as has been previously observed with the rnc-105 allele (P. Gegenheimer, N. Watson, and D. Apirion, J. Biol. Chem. 252:3064-3073, 1977). In the multiple mutant strains, the presence of the delta rnc-38 allele resulted in the more rapid decay of pulse-labeled RNA but did not suppress conditional lethality, suggesting that the lethality associated with altered mRNA turnover may be due to the stabilization of specific mRNAs. In addition, these results indicate that RNase III is probably not required for general mRNA decay. Of particular interest was the observation that the delta rnc-38 rne-1 double mutant did not accumulate 30S rRNA precursors at 30 degrees C, while the delta rnc-38 rne-3071 double mutant did. Possible explanations of these results are discussed.


Assuntos
Endorribonucleases/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/biossíntese , Análise Mutacional de DNA , Escherichia coli/enzimologia , Exorribonucleases/genética , Genes Bacterianos/genética , Meia-Vida , Mutação , Polirribonucleotídeo Nucleotidiltransferase/genética , Precursores de RNA/metabolismo , Ribonuclease III , Tiorredoxinas/genética
20.
J Bacteriol ; 175(2): 341-50, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8419285

RESUMO

The loss of DNA helicase II (UvrD) in Escherichia coli results in sensitivity to UV light and increased levels of spontaneous mutagenesis. While the effects of various uvrD alleles have been analyzed in vivo, the proteins produced by these alleles have not been examined in any detail. We have cloned one of these alleles, uvrD252, and determined the site of the mutation conferring the phenotype. In addition, the protein it encodes has been purified to homogeneity and characterized in vitro. The mutation responsible for the phenotype was identified as a glycine-to-aspartic-acid change in the putative ATP-binding domain. In comparison to wild-type DNA helicase II, the UvrD252 enzyme exhibited reduced levels of ATPase activity and a large increase in the Km for ATP. The ability of UvrD252 to unwind DNA containing single-stranded regions, as well as DNA containing only nicks, was reduced in comparison to that of the wild-type enzyme. Possible interpretations of these results in relation to the phenotypes of the uvrD252 mutant are discussed. This represents the first detailed analysis of the biochemical properties of a mutant DNA helicase II protein.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Raios Ultravioleta , Adenosina Trifosfatases/isolamento & purificação , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli , Deleção de Genes , Vetores Genéticos , Cinética , Cloreto de Magnésio/farmacologia , Dados de Sequência Molecular , Peso Molecular , Mutagênese Insercional , Oligodesoxirribonucleotídeos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...