Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 108: 102258, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315396

RESUMO

Lung cancer has the highest mortality rate. Its diagnosis and treatment analysis depends upon the accurate segmentation of the tumor. It becomes tedious if done manually as radiologists are overburdened with numerous medical imaging tests due to the increase in cancer patients and the COVID pandemic. Automatic segmentation techniques play an essential role in assisting medical experts. The segmentation approaches based on convolutional neural networks have provided state-of-the-art performances. However, they cannot capture long-range relations due to the region-based convolutional operator. Vision Transformers can resolve this issue by capturing global multi-contextual features. To explore this advantageous feature of the vision transformer, we propose an approach for lung tumor segmentation using an amalgamation of the vision transformer and convolutional neural network. We design the network as an encoder-decoder structure with convolution blocks deployed in the initial layers of the encoder to capture the features carrying essential information and the corresponding blocks in the final layers of the decoder. The deeper layers utilize the transformer blocks with a self-attention mechanism to capture more detailed global feature maps. We use a recently proposed unified loss function that combines cross-entropy and dice-based losses for network optimization. We trained our network on a publicly available NSCLC-Radiomics dataset and tested its generalizability on our dataset collected from a local hospital. We could achieve average dice coefficients of 0.7468 and 0.6847 and Hausdorff distances of 15.336 and 17.435 on public and local test data, respectively.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
2.
Comput Methods Programs Biomed ; 213: 106501, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752959

RESUMO

Automatic liver and tumor segmentation are essential steps to take decisive action in hepatic disease detection, deciding therapeutic planning, and post-treatment assessment. The computed tomography (CT) scan has become the choice of medical experts to diagnose hepatic anomalies. However, due to advancements in CT image acquisition protocol, CT scan data is growing and manual delineation of the liver and tumor from the CT volume becomes cumbersome and tedious for medical experts. Thus, the outcome becomes highly reliant on the operator's proficiency. Further, automatic liver and tumor segmentation from CT images is challenging due to complicated parenchyma, highly variable shape, and fewer voxel intensity variation among the liver, tumor, neighbouring organs, and discontinuity in liver boundaries. Recently deep learning (DL) exhibited extraordinary potential in medical image interpretation. Because of its effectiveness in performance advancement, the DL-based convolutional neural networks (CNN) gained significant interest in the medical realm. The proposed HFRU-Net is derived from the UNet architecture by modifying the skip pathways using local feature reconstruction and feature fusion mechanism that represents the detailed contextual information in the high-level features. Further, the fused features are adaptively recalibrated by learning the channel-wise interdependencies to acquire the prominent details of the modified high-level features using the squeeze-and-Excitation network (SENet). Also, in the bottleneck layer, we employed the atrous spatial pyramid pooling (ASPP) module to represent the multiscale features with dissimilar receptive fields to represent the rich spatial information in the low-level features. These amendments uplift the segmentation performance and reduce the computational complexity of the model than outperforming methods. The efficacy of the proposed model is proved by widespread experimentation on two datasets available publicly (LiTS and 3DIrcadb). The experimental result analysis illustrates that the proposed model has attained a dice similarity coefficient of 0.966 and 0.972 for liver segmentation and 0.771 and 0.776 for liver tumor segmentation on LiTS and the 3DIRCADb dataset. Further, the robustness of the HFRU-Net is confirmed on the independent LiTS challenge test dataset. The proposed model attained the global dice of 95.0% for liver segmentation and 61.4% for tumor segmentation which is comparable with the state-of-the-art methods.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
3.
Comput Med Imaging Graph ; 89: 101885, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684731

RESUMO

Automatic liver and tumor segmentation play a significant role in clinical interpretation and treatment planning of hepatic diseases. To segment liver and tumor manually from the hundreds of computed tomography (CT) images is tedious and labor-intensive; thus, segmentation becomes expert dependent. In this paper, we proposed the multi-scale approach to improve the receptive field of Convolutional Neural Network (CNN) by representing multi-scale features that extract global and local features at a more granular level. We also recalibrate channel-wise responses of the aggregated multi-scale features that enhance the high-level feature description ability of the network. The experimental results demonstrated the efficacy of a proposed model on a publicly available 3Dircadb dataset. The proposed approach achieved a dice similarity score of 97.13 % for liver and 84.15 % for tumor. The statistical significance analysis by a statistical test with a p-value demonstrated that the proposed model is statistically significant for a significance level of 0.05 (p-value < 0.05). The multi-scale approach improves the segmentation performance of the network and reduces the computational complexity and network parameters. The experimental results show that the performance of the proposed method outperforms compared with state-of-the-art methods.


Assuntos
Neoplasias , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...