Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(9): 371-380, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440899

RESUMO

Exposure to microplastics may be associated with damage of immune system. Polypropylene microplastics (PP-MPs) with a wide range of beneficial applications have not been extensively studied with respect to the immune system. The aim of this investigation is to examine the influence of two different sizes of PP-MPs (5.2 and 23.9 µm diameter) on immune system components in ICR mice. PP-MPs were administered orally to female and male mice at 0 (corn oil vehicle), 500, 1000, or 2000 mg/kg/d for single and daily for 4-week repeated toxicity test, respectively. No significant differences were observed in number of thymic CD4+, CD8+, CD4+CD8+ T lymphocytes, splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-γ to interleukin-4 in culture supernatants from activated splenocytes ex vivo (48 hr) was lower in females which were repeatedly administered with PP-MPs compared to vehicle irrespective of PP-MPs size and dose. In contrast, the opposite trend was observed in males. Production of tumor necrosis factor-α was upregulated in females that were repeatedly exposed to PP-MPs. The serum IgG2a/IgG1 ratio was lowered in female receiving large-size PP-MPs. Data suggest that immune disturbances resulting in predominant type-2 helper T cell reactivity may occur in mice, especially in females, when repeatedly exposed to PP-MPs. Further investigations with longer exposure periods are necessary to determine the immunotoxicities attributed to PP-MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos ICR , Plásticos , Polipropilenos/toxicidade , Baço
2.
Sci Total Environ ; 897: 165295, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419366

RESUMO

Microplastics (MPs) are now widely distributed across the aerial, terrestrial, and aquatic environments. Thus, exposure to MPs via the oral, inhalation, or dermal routes is inevitable. Polytetrafluoroethylene (PTFE)-MPs is mainly used for manufacturing nonstick cookware, semiconductors, and medical devices; however, their toxicity has been rarely studied. In the present study, six different human cell lines, which are representative of tissues and cells that directly or indirectly come into contact with MPs, were exposed to two different sizes of irregular shape PTFE-MPs (with an average diameter of 6.0 or 31.7 µm). PTFE-MPs-mediated cytotoxicity, oxidative stress, and changes in proinflammatory cytokine production were then evaluated. We found that the PTFE-MPs did not induce cytotoxicity under any of the experimental conditions. However, PTFE-MPs (especially average diameter of 6.0 µm) induced nitric oxide and reactive oxygen species production in all the cell lines tested. Moreover, both sizes of PTFE-MPs increased the secretion of tumor necrosis factor alpha and interleukin-6 from the U937 macrophage cell line and the A549 lung epithelial cell line, respectively. In addition, PTFE-MPs activated the MAPK signaling pathways, especially the ERK pathway, in A549 and U937 cells, and in the THP-1 dendritic cell line. We also found that the expression of the NLRP3 inflammasome was reduced in the U937 and THP-1 cell lines following treatment with the PTFE-MPs sized 31.7 µm average diameter. Furthermore, expression of the apoptosis regulator, BCL2, was markedly increased in the A549 and U937 cell lines. Thus, although PTFE-MPs exert different effects on different cell types, our findings suggest that PTFE-MPs-associated toxicity may be specifically linked to the activation of the ERK pathway, which ultimately induces oxidative stress and inflammation.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/toxicidade , Células U937 , Transdução de Sinais , Linhagem Celular , Estresse Oxidativo , Politetrafluoretileno/farmacologia , Inflamação/induzido quimicamente , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...