Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 128(8): 1063-75, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27283026

RESUMO

Tissue plasminogen activator (tPA), aside from its vascular fibrinolytic action, exerts various effects within the body, ranging from synaptic plasticity to control of cell fate. Here, we observed that by activating plasminogen and matrix metalloproteinase-9, tPA expands murine bone marrow-derived CD45(-)TER119(-)Sca-1(+)PDGFRα(+) mesenchymal stromal cells (PαS-MSCs) in vivo through a crosstalk between PαS-MSCs and endothelial cells. Mechanistically, tPA induces the release of Kit ligand from PαS-MSCs, which activates c-Kit(+) endothelial cells to secrete MSC growth factors: platelet-derived growth factor-BB (PDGF-BB) and fibroblast growth factor 2 (FGF2). In synergy, FGF2 and PDGF-BB upregulate PDGFRα expression in PαS-MSCs, which ultimately leads to PαS-MSC expansion. These data show a novel mechanism by which the fibrinolytic system expands PαS-MSCs through a cytokine crosstalk between niche cells.


Assuntos
Células Endoteliais/metabolismo , Fibrinólise , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Ataxina-1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Proliferação de Células , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Células-Tronco/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/farmacologia , Regulação para Cima/efeitos dos fármacos
2.
Blood ; 119(26): 6382-93, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22573404

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), an endogenous inhibitor of a major fibrinolytic factor, tissue-type plasminogen activator, can both promote and inhibit angiogenesis. However, the physiologic role and the precise mechanisms underlying the angiogenic effects of PAI-1 remain unclear. In the present study, we report that pharmacologic inhibition of PAI-1 promoted angiogenesis and prevented tissue necrosis in a mouse model of hind-limb ischemia. Improved tissue regeneration was due to an expansion of circulating and tissue-resident granulocyte-1 marker (Gr-1(+)) neutrophils and to increased release of the angiogenic factor VEGF-A, the hematopoietic growth factor kit ligand, and G-CSF. Immunohistochemical analysis indicated increased amounts of fibroblast growth factor-2 (FGF-2) in ischemic gastrocnemius muscle tissues of PAI-1 inhibitor-treated animals. Ab neutralization and genetic knockout studies indicated that both the improved tissue regeneration and the increase in circulating and ischemic tissue-resident Gr-1(+) neutrophils depended on the activation of tissue-type plasminogen activator and matrix metalloproteinase-9 and on VEGF-A and FGF-2. These results suggest that pharmacologic PAI-1 inhibition activates the proangiogenic FGF-2 and VEGF-A pathways, which orchestrates neutrophil-driven angiogenesis and induces cell-driven revascularization and is therefore a potential therapy for ischemic diseases.


Assuntos
Indutores da Angiogênese/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Piperazinas/farmacologia , Regeneração/efeitos dos fármacos , Serpina E2/antagonistas & inibidores , para-Aminobenzoatos , Ácido 4-Aminobenzoico/farmacologia , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fibrinolíticos/farmacologia , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Regeneração/fisiologia , Ativador de Plasminogênio Tecidual/genética , Regulação para Cima/efeitos dos fármacos
3.
Blood ; 119(23): 5405-16, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22544701

RESUMO

HSC fate decisions are regulated by cell-intrinsic and cell-extrinsic cues. The latter cues are derived from the BM niche. Membrane-type 1 matrix metalloproteinase (MT1-MMP), which is best known for its proteolytic role in pericellular matrix remodeling, is highly expressed in HSCs and stromal/niche cells. We found that, in MT1-MMP(-/-) mice, in addition to a stem cell defect, the transcription and release of kit ligand (KitL), stromal cell-derived factor-1 (SDF-1/CXCL12), erythropoietin (Epo), and IL-7 was impaired, resulting in a trilineage hematopoietic differentiation block, while addition of exogenous KitL and SDF-1 restored hematopoiesis. Further mechanistic studies revealed that MT1-MMP activates the hypoxia-inducible factor-1 (HIF-1) pathway via factor inhibiting HIF-1 (FIH-1) within niche cells, thereby inducing the transcription of HIF-responsive genes, which induce terminal hematopoietic differentiation. Thus, MT1-MMP in niche cells regulates postnatal hematopoiesis, by modulating hematopoietic HIF-dependent niche factors that are critical for terminal differentiation and migration.


Assuntos
Citocinas/genética , Hematopoese , Células-Tronco Hematopoéticas/citologia , Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Ativação Transcricional , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Quimiocinas/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
4.
Int J Hematol ; 95(2): 131-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22311463

RESUMO

Angiogenesis is a process by which new blood vessels form from preexisting vasculature. This process includes differentiation of angioblasts into endothelial cells with the help of secreted angiogenic factors released from cells such as bone marrow (BM)-derived cells. The fibrinolytic factor plasmin, which is a serine protease, has been shown to promote endothelial cell migration either directly, by degrading matrix proteins such as fibrin, or indirectly, by converting matrix-bound angiogenic growth factors into a soluble form. Plasmin can also activate other pericellular proteases such as matrix metalloproteinases (MMPs). Recent studies indicate that plasmin can additionally alter cellular adhesion and migration. We showed that factors of the fibrinolytic pathway can recruit BM-derived hematopoietic cells into ischemic/hypoxic tissues by altering the activation status of MMPs. These BM-derived cells can function as accessory cells that promote angiogenesis by releasing angiogenic signals. This review will discuss recent data regarding the role of the fibrinolytic system in controlling myeloid cell-driven angiogenesis. We propose that plasmin/plasminogen may be a potential target not only for development of effective angiogenic therapeutic strategies for the treatment of cancer, but also for development of strategies to promote ischemic tissue regeneration.


Assuntos
Células da Medula Óssea/fisiologia , Fibrinólise/fisiologia , Hematopoese/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Fibrinolisina/fisiologia , Humanos , Metaloproteinases da Matriz/fisiologia , Plasminogênio/fisiologia , Regeneração/fisiologia
5.
Mol Endocrinol ; 25(5): 745-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21436261

RESUMO

Adipogenesis is directed by both transcriptional network and posttranslational modification of chromatin structure. Although adipogenesis in vivo proceeds in collagen-rich extracellular matrix (ECM) environments, the impact of ECM proteins and their modifying enzymes on the epigenetic regulation of adipogenesis has been largely unknown. We aimed to define the role of fibrillar type I collagen and its modifying enzymes in regulating adipogenic chromatin signatures and gene regulation in the in vivo-like settings. Adipogenic cocktail induces a robust increase in the level of protranscriptional acetylated histone H3 at lysine 9 (H3K9ac) within 24 h. When cultured atop fibrillar type I collagen gel, however, H3K9ac levels in differentiating 3T3-L1 cells are substantially reduced. The suppression of adipogenic histone mark in differentiating 3T3-L1 cells is type I collagen density dependent and released by heat denaturing of the subjacent collagen substratum, pointing to the critical role played by the triple-helical structure of type I collagen. By probing adipogenic collagenolysis with a series of proteinase inhibitors, matrix metalloproteinase (MMP) family members are found to be responsible for adipogenic collagenolysis. At the same time, MMP inhibitor specifically blocked the adipogenic induction of H3K9ac. By targeting individual MMP using small interfering RNA oligos, MMP14 was identified as the major adipogenic MMP critical for H3K9 acetylation. Consistently, MMP14-null adipose tissues display diminished protranscriptional histone mark H3K9ac while maintaining repressive histone mark tri-methylated histone H3 at lysine 9 (H3K9me3). Taken together, MMP14-dependent collagenolysis plays the major role in regulating adipogenic histone marks by releasing the epigenetic constraints imposed by fibrillar type I collagen.


Assuntos
Adipogenia , Tecido Adiposo/fisiologia , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Células 3T3-L1 , Acetilação , Animais , Epigênese Genética , Técnica Indireta de Fluorescência para Anticorpo , Metilação , Camundongos , Camundongos Knockout , Ratos
6.
Diabetes ; 59(10): 2484-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660624

RESUMO

OBJECTIVE: In white adipose tissue, adipocytes and adipocyte precursor cells are enmeshed in a dense network of type I collagen fibrils. The fate of this pericellular collagenous web in diet-induced obesity, however, is unknown. This study seeks to identify the genetic underpinnings of proteolytic collagen turnover and their association with obesity progression in mice and humans. RESEARCH DESIGN AND METHODS: The hydrolysis and degradation of type I collagen at early stages of high-fat diet feeding was assessed in wild-type or MMP14 (MT1-MMP)-haploinsufficient mice using immunofluorescent staining and scanning electron microscopy. The impact of MMP14-dependent collagenolysis on adipose tissue function was interrogated by transcriptome profiling with cDNA microarrays. Genetic associations between MMP14 gene common variants and obesity or diabetes traits were examined in a Japanese cohort (n = 3,653). RESULTS: In adult mice, type I collagen fibers were cleaved rapidly in situ during a high-fat diet challenge. By contrast, in MMP14 haploinsufficient mice, animals placed on a high-fat diet were unable to remodel fat pad collagen architecture and display blunted weight gain. Moreover, transcriptional programs linking type I collagen turnover with adipogenesis or lipogenesis were disrupted by the associated decrease in collagen turnover. Consistent with a key role played by MMP14 in regulating high-fat diet-induced metabolic programs, human MMP14 gene polymorphisms located in proximity to the enzyme's catalytic domain were closely associated with human obesity and diabetes traits. CONCLUSIONS: Together, these findings demonstrate that the MMP14 gene, encoding the dominant pericellular collagenase operative in vivo, directs obesogenic collagen turnover and is linked to human obesity traits.


Assuntos
Colágeno/metabolismo , Metaloproteinase 14 da Matriz/genética , Obesidade/genética , Tecido Adiposo/metabolismo , Animais , Gorduras na Dieta/farmacologia , Regulação Enzimológica da Expressão Gênica , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Metaloproteinase 14 da Matriz/deficiência , Camundongos , Obesidade/enzimologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Aumento de Peso
7.
Endocrinology ; 151(6): 2567-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20382694

RESUMO

We previously reported that 3T3-L1 and rat primary adipocytes secreted microvesicles, known as adipocyte-derived microvesicles (ADMs). In the present study, we further characterized the 3T3-L1 ADMs and found that they exhibited angiogenic activity in vivo. Antibody arrays and gelatin zymography analyses revealed that several angiogenic and antiangiogenic proteins, including leptin, TNFalpha, acidic fibroblast growth factor (FGFa), interferon-gamma, and matrix metalloprotease (MMP)-2 and MMP-9, were present in the ADMs. Gene expression of most of these angiogenic factors was induced in the adipose tissue of diet-induced obese mice. Furthermore, leptin, TNFalpha, and MMP-2 were up-regulated at the protein level in the adipocyte fractions prepared from epididymal adipose tissues of high-fat-diet-induced obese mice. ADMs induced cell migration and tube formation of human umbilical vein endothelial cells, which were partially suppressed by neutralizing antibodies to leptin, TNFalpha, or FGFa but not to interferon-gamma. Supporting these data, a mixture of leptin, TNFalpha, and FGFa induced tube formation. ADMs also promoted cell invasion of human umbilical vein endothelial cells through Matrigel, which was suppressed by the addition of the MMP inhibitor 1,10'-phenanthroline and a neutralizing antibody to MMP-2 but not to MMP-9. These results suggest that ADMs are associated with multiple angiogenic factors and play a role in angiogenesis in adipose tissue.


Assuntos
Adipócitos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Interferon gama/metabolismo , Leptina/metabolismo , Neovascularização Fisiológica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1 , Animais , Linhagem Celular , Movimento Celular/fisiologia , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/citologia , Humanos , Immunoblotting , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...