Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 23(1): 21-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24839990

RESUMO

Bone metastasis is a devastating complication of cancer that requires an immediate attention. Although our understanding of the metastatic process has improved over the years, yet a number of questions still remain unanswered, and more research is required for complete understanding of the skeletal consequences of metastasis. Furthermore, as no effective treatments are available for some of the most common skeleton disorders such as arthritis, osteoarthritis, osteosarcoma and metastatic bone cancer, there is an urgent need to develop new drugs and drug delivery systems for safe and efficient clinical treatments. Hence this article describes the potential of targeted delivery platforms aimed specifically at bone metastasized tumors. The review gives a brief understanding of the proposed mechanisms of metastasis and focuses primarily on the targeting moieties such as bisphosphonates, which represent the current gold standard in bone metastasis therapies. Special focus has been given to the targeted nanoparticulate systems for treating bone metastasis and its future. Also highlighted are some of the therapeutic targets that can be exploited for designing therapies for bone metastasis. Some of the patented molecules for bone metastasis prevention and treatment have also been discussed. Recently proposed HIFU-CHEM, which utilizes High Intensity Focused ultrasound (HIFU) guided by MRI in combination with temperature-sensitive nanomedicines has also been briefed. The study has been concluded with a focus on the innovations requiring an immediate attention that could improve the treatment modality of bone metastasis.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Sistemas de Liberação de Medicamentos/métodos , Animais , Osso e Ossos/efeitos dos fármacos , Excipientes , Humanos
2.
Indian J Pharm Sci ; 73(5): 491-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923860

RESUMO

Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t(50%) 1.8 min) compared to the conventional commercial tablet formulation (t(50%) 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...