Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 16332-16339, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813992

RESUMO

Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.

2.
Sci Adv ; 10(1): eadi3147, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170775

RESUMO

Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.

3.
Chemistry ; 29(62): e202303311, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873888

RESUMO

Invited for the cover of this issue are the groups of Kazuteru Usui and Satoru Karasawa at Showa Pharmaceutical University and Yasuhiro Kobori of Kobe University. The image depicts chirality control of helical compounds through cycles of photocleavage and recombination under sunlight with a "Jack and the Beanstalk" motif. Read the full text of the article at 10.1002/chem.202302413.

4.
Chemistry ; 29(62): e202302413, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37612241

RESUMO

Herein, we report the synthesis of two "partially embedded fused-dihydropyridazine N-aryl aza[5]helicene derivatives" (PDHs) and the demonstration of their intrinsic photo-triggered multi-functional properties based on a Kekulé biradical structure. Introducing bulky electron-withdrawing trifluoromethyl or pentafluoroethyl groups into the aza[5]helicene framework (PDH-CF3 and -C2 F5 ) gives PDH axial chirality based on the helicity of the P and M forms, even at room temperature. Upon photo-irradiation of PDH-CF3 in a frozen solution, an ESR signal from the triplet biradical with zero-field splitting values, generated by N-N bond dissociation, was observed. However, when the irradiation was turned off, the ESR signal became silent, thus indicating the existence of two equilibria: between the biradical and quinoidal forms based on the Kekulé structure, and between N-N bond cleavage and recombination. The observed photo- and thermally induced behaviors indicate that T-type photochromic molecules are involved in the photoisomerization mechanism involving the two equilibria. Inspired by the photoisomerization, chirality control of PDH by photoracemization was achieved. Multiple functionalities, such as T-type photochromism, photo-excitation-mediated triplet biradical formation, and photoracemization, which are attributed to the "partially embedded dihydropyridazine" structure, are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...