Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(3): e711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36921209

RESUMO

Hemostasis is a multifactorial process that involves vasoconstriction of blood vessels, activation of the coagulation cascade, and platelet aggregation. Inappropriate activation of hemostatic processes can result in thrombosis and tissue ischemia. In patients at risk for thrombotic events, antiplatelet therapeutic agents inhibit platelet activation, thereby reducing the incidence of pathologic clot formation. Platelets are activated by several endogenous chemical mediators, including adenosine diphosphate, thrombin, and thromboxane. These activation pathways serve as attractive drug targets. The protocols described in this article are designed to evaluate the preclinical efficacy and safety of novel antiplatelet therapeutics in rabbits. Here, we provide two protocols for blood collection, two for determining platelet activation, and one for assessing bleeding safety. Together, these protocols can be used to characterize the efficacy and safety of antiplatelet agents for hemostasis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Blood collection via the central ear artery Alternative Protocol 1: Blood collection via the jugular vein Basic Protocol 2: Platelet aggregation assessment via light transmission aggregometry Alternative Protocol 2: Platelet activation assessment via flow cytometry Basic Protocol 3: Determination of tongue bleeding time.


Assuntos
Coagulação Sanguínea , Trombose , Animais , Coelhos , Coagulação Sanguínea/fisiologia , Inibidores da Agregação Plaquetária/efeitos adversos , Plaquetas/metabolismo , Hemostasia , Ativação Plaquetária/fisiologia , Trombose/tratamento farmacológico , Trombose/metabolismo
2.
Purinergic Signal ; 18(3): 253-265, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678974

RESUMO

Clopidogrel is a widely prescribed prodrug with anti-thrombotic activity through irreversible inhibition of the P2Y12 receptor on platelets. It is FDA-approved for the clinical management of thrombotic diseases like unstable angina, myocardial infarction, stroke, and during percutaneous coronary interventions. Hepatic clopidogrel metabolism generates several distinct metabolites. Only one of these metabolites is responsible for inhibiting the platelet P2Y12 receptor. Importantly, various non-hemostatic effects of clopidogrel therapy have been described. These non-hemostatic effects are perhaps unsurprising, as P2Y12 receptor expression has been reported in multiple tissues, including osteoblasts, leukocytes, as well as vascular endothelium and smooth muscle. While the "inactive" metabolites have been commonly thought to be biologically inert, recent findings have uncovered P2Y12 receptor-independent effects of clopidogrel treatment that may be mediated by understudied metabolites. In this review, we summarize both the P2Y12 receptor-mediated and non-P2Y12 receptor-mediated effects of clopidogrel and its metabolites in various tissues.


Assuntos
Clopidogrel , Trombose , Plaquetas , Clopidogrel/metabolismo , Clopidogrel/uso terapêutico , Humanos , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Receptores Purinérgicos P2Y12/metabolismo , Trombose/tratamento farmacológico , Resultado do Tratamento
3.
Eur J Pharmacol ; 911: 174545, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606835

RESUMO

Clopidogrel is an effective purinergic 2Y12 receptor (P2Y12) antagonist used to prevent arterial thrombosis, but its use is associated with adverse bleeding. Clinical studies have demonstrated that clopidogrel users have an increased risk of cerebral microbleeds and intracerebral hemorrhage. Our previous studies suggest that non-platelet mechanisms mediate these adverse bleeding events; we hypothesize that clopidogrel or one of its metabolites interacts with blood vessels directly to cause bleeding. New Zealand white rabbits (1.9-2.7 kg) were treated orally with vehicle or clopidogrel (3 or 10 mg/kg) for three days. On the fourth day, the rabbits were anesthetized for blood collection and then euthanized. The brain was collected, and the middle cerebral arteries were isolated. We used light transmission aggregometry and pressure myography to elucidate the mechanisms of the off-target effects associated with clopidogrel treatment. We confirmed that inhibition of P2Y12 activation by clopidogrel inhibited ADP-induced platelet aggregation but had no impact on P2Y12-independent arachidonic acid- or collagen-induced platelet aggregation. Analysis of middle cerebral arteries from clopidogrel treated rabbits showed that clopidogrel did not affect P2Y4, P2Y6, and P2Y14 receptor-mediated contraction but attenuated the contractile response after P2Y2 receptor activation. Further analysis determined P2Y2-mediated constriction was endothelium-dependent. Vasoconstriction is a primary component of hemostasis, and impaired vasoconstriction can prolong bleeding. These results suggest clopidogrel inhibits the endothelial P2Y2 receptor in the middle cerebral artery, which provides a mechanistic explanation for the adverse cerebral bleeding associated with the drug.


Assuntos
Clopidogrel
4.
Pharmacol Res Perspect ; 7(4): e00509, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31372229

RESUMO

The novel clopidogrel conjugate, DT-678, is an effective inhibitor of platelets and thrombosis in preclinical studies. However, a comparison of the bleeding risk with DT-678 and currently approved P2Y12 antagonists has yet to be determined. The objective of this study was to evaluate the bleeding tendency of animals treated with clopidogrel, ticagrelor, and DT-678. Ninety-one New Zealand white rabbits were randomized to one of 13 treatment groups (n = 7). Platelet activation was assessed by flow cytometry and light transmission aggregometry before and after the administration of various doses of DT-678, clopidogrel, and ticagrelor. Tongue template bleeding times were also measured before and after drug treatment. Treatment with P2Y12 receptor antagonists caused a dose-dependent reduction in markers of platelet activation (P-selectin and integrin αIIbß3) and aggregation in response to adenosine diphosphate stimulation. At the same doses required for platelet inhibition, clopidogrel and ticagrelor significantly prolonged bleeding times, while DT-678 did not. DT-678 and the FDA-approved P2Y12 antagonists clopidogrel and ticagrelor are effective inhibitors of platelet activation and aggregation. However, unlike clopidogrel and ticagrelor, DT-678 did not prolong bleeding times at equally effective antiplatelet doses. The results suggest a more favorable benefit/risk ratio for DT-678 and potential utility as part of a dual antiplatelet therapy regimen.


Assuntos
Dissulfetos/administração & dosagem , Ativação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Animais , Tempo de Sangramento , Clopidogrel/administração & dosagem , Clopidogrel/química , Clopidogrel/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Relação Dose-Resposta a Droga , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Coelhos , Distribuição Aleatória , Ticagrelor/administração & dosagem , Ticagrelor/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...