Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521635

RESUMO

To access the properties of theoretical graphene, it is crucial to manufacture layers with a defect-free structure. The imperfections of the structure are the cause of deterioration in both electrical and mechanical properties. Among the most commonly occurring crystalline defects, there are grain boundaries and overlapping zones. Hence, perfect graphene shall be monocrystalline, which is difficult and expensive to obtain. An alternative to monocrystalline structure is a quasi-monocrystalline graphene with low angle-type boundaries without the local overlapping of neighboring flakes. The purpose of this work was to identify factors that directly affect the structure of graphene grown on a surface of a liquid metal. In the article the growth of graphene on a liquid copper is presented. Nucleating graphene flakes are able to move with three degrees of freedom creating low-angle type boundaries when they attach to one another. The structure of graphene grown with the use of this method is almost free of overlapping zones. In addition, the article presents the influence of impurities on the amount of crystallization nuclei formed, and thus the possibility to order the structure, creating a quasi-monocrystalline layer.

2.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795215

RESUMO

Graphene is a very promising material for electronics applications. In recent years, its sensitivity to ultraviolet (UV) irradiation has been studied extensively. However, there is no clear answer to the question, which factor has a key influence on the sensitivity of graphene to UV. In order to check the influence of the final substrate on the electrical response, graphene transferred on polymeric and non-polymeric substrate was investigated. To achieve this goal three polymeric and three non-polymeric substrates were tested. The results of the preliminary tests indicated the different character of the reaction on UV irradiation in each of group. To explain the reason of the difference, the complementary studies were done. The samples that were resistant to high temperature were annealed in a vacuum at 500 °C to get rid of water trapped between graphene and the substratum. The samples after annealing reacted less dynamically to UV irradiation. Moreover, the progress of changes in electrical response of the annealed samples had a similar character to the polymeric substrates, with the hydrophobic nature of the surface. These studies clearly prove that the sensitivity of graphene to UV irradiation is influenced by water trapped under the graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...