Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(3): 1865-1885, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534738

RESUMO

Blood-derived products, such as citrate platelet-rich plasma (CPRP) and hyperacute serum (HAS), are recognized for their rich growth factor content. When human dermal fibroblast (HDF) cells are exposed to combined mitogenic and DNA-damaging stimuli, it can lead to an increased burden of senescent cells and a modified senescence-associated secretory phenotype. In this study, the senescent state was comprehensively assessed through various methods, including phosphorylated histone H2AX (γH2AX) staining, p21 and p16 q-PCR, p21-western blot, growth curves, and senescence-associated ß-galactosidase staining. Two primary treatments with blood products were administered, one early (immediately after etoposide) and the other late (11 days after etoposide treatment). The effects of the blood product treatment were evaluated by measuring interleukin 6 and 8 (IL-6 and IL-8) levels, as well as collagen 1 (COL1) and p21 mRNA expression. Additionally, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assays, cell size measurements, viability assays, and cell number calculations were conducted. The results revealed that cells treated with hyperacute serum in the early treatment phase exhibited the lowest observed IL-6 and IL-8 levels. In contrast, a clear inflammatory response for IL-8 was observed in cells treated with hyperacute serum and citrate platelet-rich plasma during the late treatment. Furthermore, an upregulation of COL1 expression was observed in the early treatment, while cells in the late treatment group remained unaffected. Notably, citrate platelet-rich plasma-treated cells showed a decrease in COL1 expression. Overall, the treatment with blood products appears to have slightly positive effects on skin rejuvenation.

2.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142472

RESUMO

Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Anticoagulantes , Materiais Biocompatíveis/uso terapêutico , Albumina Sérica , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
Infect Dis Ther ; 11(1): 293-304, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34817840

RESUMO

INTRODUCTION: Plasma harvested from convalescent COVID-19 patients (CCP) has been applied as first-line therapy in the early phase of the SARS-CoV2 pandemic through clinical studies using various protocols. METHODS: We present data from a cohort of 267 hospitalized severe COVID-19 patients who received CCP. No transfusion-related complications were reported, indicating the overall safety of CCP therapy. RESULTS: Patients who eventually died from COVID-19 received CCP significantly later (3.95 versus 5.22 days after hospital admission) and had higher interleukin 6 (IL-6) levels (28.9 pg/ml versus 102.5 pg/ml) than those who survived. In addition, CCP transfusion caused a significant reduction in the overall inflammatory status of the patients regardless of the severity of disease or outcome, as evidenced by decreasing C-reactive protein, IL6 and ferritin levels. CONCLUSION: We conclude that CCP transfusion is a safe and effective supplementary treatment modality for hospitalized COVID-19 patients characterized by better expected outcome if applied as early as possible. We also observed that IL-6 may be a suitable laboratory parameter for patient selection and monitoring of CCP therapy effectiveness.

5.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299123

RESUMO

Hyperacute serum (HAS) is a blood derivative product that promotes the proliferation of various cell types and controls inflammation in vitro. The aim of this study is to investigate the regenerative potential of different formulations of HAS, including lyophilized and hyaluronic acid combined versions, to obtain a stable and standardized therapeutic in osteoarthritis (OA), which may be able to overcome the variability limitations of platelet-rich plasma (PRP). Primary human osteoarthritic chondrocytes were used for testing cellular viability and gene expression of OA-related genes. Moreover, a co-culture of human explants of cartilage, bone and synovium under inflammatory conditions was used for investigating the inflammatory control capacities of the different therapeutics. In this study, one formulation of lyophilized HAS achieved the high cell viability rates of liquid HAS and PRP. Gene expression analysis showed that HAS induced higher Col1a1 expression than PRP. Cytokine quantification from supernatant fluids revealed that HAS treatment of inflamed co-cultures significantly reduced levels of IL-5, IL-15, IL-2, TNFα, IL-7 and IL-12. To conclude, lyophilized HAS is a stable and standardized therapeutic with high potential in joint regeneration.


Assuntos
Condrócitos/citologia , Osteoartrite/terapia , Plasma Rico em Plaquetas/química , Regeneração , Medicina Regenerativa/normas , Soro/química , Adulto , Técnicas de Cocultura , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade
6.
Curr Issues Mol Biol ; 43(2): 665-675, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287259

RESUMO

Intra-articular injection of different types of blood-derived products is gaining popularity and clinical importance in the treatment of degenerative cartilage disorders such as osteoarthritis. The regenerative potential of two types of platelet-rich plasma (PRP), prepared in the presence of EDTA (EPRP) and citrate (CPRP) and an alternative blood product-hyperacute serum (hypACT) was evaluated using a 3D osteoarthritic chondrocyte pellet model by assessing the metabolic cell activity, cartilage-related gene expression and extracellular matrix deposition within the pellets. Chondrocyte viability was determined by XTT assay and it revealed no significant difference in metabolic activity of OA chondrocyte pellets after supplementation with different blood products. Nevertheless, the selection of blood products influenced the cartilage-related genes expression, ECM morphology and the tissue quality of pellets. Both PRP types had a different biological effect depending upon concentration and even though CPRP is widely used in clinics our assessment did not reveal good results in gene expression either tissue quality. HypACT supplementation resulted in superior cartilage-related genes expression together with tissue quality and seemed to be the most stable product since no remarkable changes were observed between the two different concentrations. All in all, for successful regenerative therapy, possible molecular mechanisms induced by blood-derived products should be always carefully investigated and adapted to the specific medical indications.


Assuntos
Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Osteogênese , Fibrina Rica em Plaquetas , Plasma Rico em Plaquetas , Regeneração , Adulto , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Condrócitos/metabolismo , Metabolismo Energético , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Fibrina Rica em Plaquetas/metabolismo , Plasma Rico em Plaquetas/metabolismo
7.
Curr Issues Mol Biol ; 43(2): 637-649, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287260

RESUMO

The serum fraction of platelet-rich fibrin (hyperacute serum) has been shown to improve cartilage cell proliferation in in vitro osteoarthritic knee joint models. We hypothesize that hyperacute serum may be a potential regenerative therapeutic for osteoarthritic knees. In this study, the cytokine milieu at the synovial fluid of osteoarthritic knee joints exposed to hyperacute serum intraarticular injections was investigated. Patients with knee osteoarthritis received three injections of autologous hyperacute serum; synovial fluid was harvested before each injection and clinical monitoring was followed-up for 6 months. Forty osteoarthritic-related cytokines, growth factors and structural proteins from synovial fluid were quantified and analysed by Multivariate Factor Analysis. Hyperacute serum provided symptomatic relief regarding pain and joint stability for OA patients. Both patients "with" and "without effusion knees" had improved VAS, KOOS and Lysholm-Tegner scores 6 months after of hyperacute serum treatment. Synovial fluid analysis revealed two main clusters of proteins reacting together as a group, showing strong and significant correlations with their fluctuation patterns after hyperacute serum treatment. In conclusion, hyperacute serum has a positive effect in alleviating symptoms of osteoarthritic knees. Moreover, identified protein clusters may allow the prediction of protein expression, reducing the number of investigated proteins in future studies.


Assuntos
Citocinas/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/terapia , Fibrina Rica em Plaquetas , Adulto , Biomarcadores , Citocinas/sangue , Gerenciamento Clínico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/etiologia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Resultado do Tratamento , Adulto Jovem
8.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281278

RESUMO

Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. One major driver of OA is inflammation, in which cytokines such as IL-6, TNF-α and IL-1ß are secreted by activated chondrocytes, as well as synovial cells-including macrophages. Intra-articular injection of blood products-such as citrate-anticoagulated plasma (CPRP), hyperacute serum (hypACT), and extracellular vesicles (EVs) isolated from blood products-is gaining increasing importance in regenerative medicine for the treatment of OA. A co-culture system of primary OA chondrocytes and activated M1 macrophages was developed to model an OA joint in order to observe the effects of EVs in modulating the inflammatory environment. Primary OA chondrocytes were obtained from patients undergoing total knee replacement. Primary monocytes obtained from voluntary healthy donors and the monocytic cell line THP-1 were differentiated and activated into proinflammatory M1 macrophages. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and Western blot. Gene expression analysis of chondrocytes by RT-qPCR revealed increased type II collagen expression, while cytokine profiling via ELISA showed lower TNF-α and IL-1ß levels associated with EV treatment. In conclusion, the inflammation model provides an accessible tool to investigate the effects of blood products and EVs in the inflammatory context of OA.


Assuntos
Condrócitos/imunologia , Vesículas Extracelulares/imunologia , Osteoartrite/terapia , Condrócitos/metabolismo , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/terapia , Injeções Intra-Articulares , Interleucina-1beta/metabolismo , Masculino , Modelos Biológicos , Monócitos/imunologia , Osteoartrite/genética , Osteoartrite/imunologia , Medicina Regenerativa/métodos , Fator de Necrose Tumoral alfa/metabolismo
9.
Sci Rep ; 11(1): 5823, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712660

RESUMO

Cartilage breakdown, inflammation and pain are hallmark symptoms of osteoarthritis, and autologous blood products such as citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) have been developed as a regenerative approach to rebuild cartilage, inhibit inflammation and reduce pain. However, mechanisms of action of these blood derivatives are still not fully understood, in part due to the large number of components present in these medical products. In addition, the discovery of extracellular vesicles (EVs) and their involvement in intercellular communication mediated by cargo molecules like microRNAs (miRNAs) opened up a whole new level of complexity in understanding blood products. In this study we focused on the development of an isolation protocol for EVs from CPRP and hypACT that can also deplete lipoproteins, which are often co-isolated in EV research due to shared physical properties. Several isolation methods were compared in terms of particle yield from CPRP and hypACT. To gain insights into the functional repertoire conveyed via EV-associated miRNAs, we performed functional enrichment analysis and identified NFκB signaling strongly targeted by CPRP EV miRNAs, whereas hypACT EV miRNAs affect IL6- and TGFß/SMAD signaling.


Assuntos
Vesículas Extracelulares/genética , Lipoproteínas/isolamento & purificação , MicroRNAs/genética , Cromatografia em Gel , Vesículas Extracelulares/química , Humanos , MicroRNAs/análise , Plasma Rico em Plaquetas/química , Soro/química , Ultracentrifugação
10.
Front Bioeng Biotechnol ; 8: 584050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102466

RESUMO

Autologous blood products gain increasing interest in the field of regenerative medicine as well as in orthopedics, aesthetic surgery, and cosmetics. Currently, citrate-anticoagulated platelet-rich plasma (CPRP) preparations are often applied in osteoarthritis (OA), but more physiological and cell-free alternatives such as hyperacute serum (hypACT) are under development. Besides growth factors, blood products also bring along extracellular vesicles (EVs) packed with signal molecules, which open up a new level of complexity at evaluating the functional spectrum of blood products. Large proportions of EVs originated from platelets in CPRP and hypACT, whereas very low erythrocyte and monocyte-derived EVs were detected via flow cytometry. EV treatment of chondrocytes enhanced the expression of anabolic markers type II collagen, SRY-box transcription factor 9 (SOX9), and aggrecan compared to full blood products, but also the catabolic marker and tissue remodeling factor matrix metalloproteinase 3, whereas hypACT EVs prevented type I collagen expression. CPRP blood product increased SOX9 protein expression, in contrast to hypACT blood product. However, hypACT EVs induced SOX9 protein expression while preventing interleukin-6 secretion. The results indicate that blood EVs are sufficient to induce chondrogenic gene expression changes in OA chondrocytes, while preventing proinflammatory cytokine release compared to full blood product. This highlights the potential of autologous blood-derived EVs as regulators of cartilage extracellular matrix metabolism and inflammation, as well as candidates for new cell-free therapeutic approaches for OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...