Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clean Prod ; 319: 128599, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35958184

RESUMO

Air pollution is one of the vital problems for the sustainability of cities and public health. The lockdown caused by the COVID-19 outbreak has become a natural laboratory, enabling to investigate the impact of human/industrial activities on the air pollution. In this study, we investigated the spatio-temporal density of TROPOMI-based nitrogen dioxide (NO2) and sulfur dioxide (SO2) products, and MODIS-derived Aerosol Optical Depth (AOD) from January 2019 to September 2020 (also covering the first wave of the COVID-19) over Turkey using Google Earth Engine (GEE). The results showed a significant decrease in NO2 and AOD, while SO2 unchanged and had slightly higher concentrations in some regions during the lockdown compared to 2019. The relationship between air pollutants and meteorological parameters during the lockdown showed that air temperature and pressure were highly correlated with air pollutants, unlike precipitation and wind speed. Moreover, Purchasing Managers' Index (PMI) data, indicator of economic/industrial activities, also provided poor correlation with air pollutants. TROPOMI-based NO2 and SO2 were compared with station-based pollutants for three sites (suburban, urban, and urban-traffic classes) in Istanbul, revealing 0.83, 0.70 and 0.65 correlation coefficients for NO2, respectively, while SO2 showed no significant correlation. Besides, AOD data were validated using two AERONET sites providing 0.86 and 0.82 correlation coefficients. Overall, the satellite-based data provided significant outcomes for the spatio-temporal evaluation of air quality, especially during the first wave of the COVID-19 lockdown.

2.
Environ Monit Assess ; 188(1): 30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26666659

RESUMO

The aim of this study is to analyze spatio-temporal variability in Land Surface Temperature (LST) in and around the city of Zonguldak as a result of the growing urbanization and industrialization during the last decade. Three Landsat 5 data and one Landsat 8 data acquired on different dates were exploited in acquiring LST maps utilizing mono-window algorithm. The outcomes obtained from this study indicate that there exists a significant temperature rise in the region for the time period between 1986 and 2015. Some cross sections were selected in order to examine the relationship between the land use and LST changes in more detail. The mean LST difference between 1986 and 2015 in ERDEMIR iron and steel plant (6.8 °C), forestland (3 °C), city and town centers (4.2 °C), municipal rubbish tip (-3.9 °C), coal dump site (12.2 °C), and power plants' region (7 °C) were presented. In addition, the results indicated that the mean LST difference between forestland and city centers was approximately 5 °C, and the difference between forestland and industrial enterprises was almost 8 °C for all years. Spatio-temporal variability in LST in Zonguldak was examined in that study and due to the increase in LST, policy makers and urban planners should consider LST and urban heat island parameters for sustainable development.


Assuntos
Monitoramento Ambiental/métodos , Temperatura , Cidades , Conservação dos Recursos Naturais , Florestas , Temperatura Alta , Turquia , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...