Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(6)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35521705

RESUMO

Soil fungi are vital to forest ecosystem function, in part through their role mediating tree responses to environmental factors, as well as directly through effects on resource cycling. While the distribution of soil fungi can vary with abiotic factors, plant species identity is also known to affect community composition. However, the particular influence that a plant will have on its soil microbiota remains difficult to predict. Here, we paired amplicon sequencing and enzymatic assays to assess soil fungal composition and function under three tree species, Quercus rubra, Betula nigra, and Acer rubrum, planted individually and in all combinations in a greenhouse. We observed that fungal communities differed between each of the individual planted trees, suggesting at least some fungal taxa may associate preferentially with these tree species. Additionally, fungal community composition under mixed-tree plantings broadly differed from the individual planted trees, suggesting mixing of these distinct soil fungal communities. The data also suggest that there were larger enzymatic activities in the individual plantings as compared to all mixed-tree plantings which may be due to variations in fungal community composition. This study provides further evidence of the importance of tree identity on soil microbiota and functional changes to forest soils.


Assuntos
Ecossistema , Fungos , Microbiota , Microbiologia do Solo , Simbiose , Árvores , Florestas , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Microbiota/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Simbiose/fisiologia , Árvores/microbiologia
2.
Environ Microbiol ; 23(8): 4595-4611, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190389

RESUMO

A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land-use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land-use associated factors creating site-specific compositions. By employing a quantitative, null-based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.


Assuntos
Microbiota , Anfíbios , Animais , Bactérias/genética , Fungos/genética , Humanos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...