Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 220: 344-352, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30590300

RESUMO

Surface water concentrations of 54 pharmaceuticals were predicted for seven major Swedish rivers and the Stockholm City area basins using the STREAM-EU model. These surface water concentrations were used to predict the ecotoxicological impact resulting from the exposure of aquatic organisms to this mixture of 54 pharmaceuticals. STREAM-EU model results indicated that <10 substances were present at median annual water concentrations greater than 10 ng/L with highest concentrations occurring mostly in the more densely populated area of the capital city, Stockholm. There was considerable spatial and temporal variability in the model predictions (1-3 orders of magnitude) due to natural variability (e.g. hydrology, temperature), variations in emissions and uncertainty sources. Local mixture ecotoxicological pressures based on acute EC50 data as well as on chronic NOEC data, expressed as multi-substance potentially affected fraction of species (msPAF), were quantified in 114 separate locations in the waterbodies. It was estimated that 5% of the exposed aquatic species would experience exposure at or above their acute EC50 concentrations (so-called acute hazardous concentration for 5% of species, or aHC5) at only 7% of the locations analyzed (8 out of 114 locations). For the evaluation based on chronic NOEC concentrations, the chronic HC5 (cHC5) is exceeded at 27% of the locations. The acute mixture toxic pressure was estimated to be predominantly caused by only three substances in all waterbodies: Furosemide, Tramadol and Ibuprofen. A similar evaluation of chronic toxic pressure evaluation logically demonstrates that more substances play a significant role in causing a higher chronic toxic pressure at more sites as compared to the acute toxic pressure evaluation. In addition to the three substances contributing most to acute effects, the chronic effects are predominantly caused by another five substances: paracetamol, diclofenac, ethinylestradiol, erythromycin and ciprofloxacin. This study provides regulatory authorities and companies responsible for water quality valuable information for targeting remediation measures and monitoring on a substance and location basis.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Água Doce , Preparações Farmacêuticas/metabolismo , Suécia , Testes de Toxicidade
2.
Environ Pollut ; 223: 595-604, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28153413

RESUMO

An exposure assessment for multiple pharmaceuticals in Swedish surface waters was made using the STREAM-EU model. Results indicate that Metformin (27 ton/y), Paracetamol (6.9 ton/y) and Ibuprofen (2.33 ton/y) were the drugs with higher amounts reaching the Baltic Sea in 2011. 35 of the studied substances had more than 1 kg/y of predicted flush to the sea. Exposure potential given by the ratio amount of the drug exported to the sea/amount emitted to the environment was higher than 50% for 7 drugs (Piperacillin, Lorazepam, Metformin, Hydroxycarbamide, Hydrochlorothiazide, Furosemide and Cetirizine), implying that a high proportion of them will reach the sea, and below 10% for 27 drugs, implying high catchment attenuation. Exposure potentials were found to be dependent of persistency and hydrophobicity of the drugs. Chemicals with Log D > 2 had exposure potentials <10% regardless of their persistence. Chemicals with Log D  <  -2 had exposure potentials >35% with higher ratios typically achieved for longer half-lives. For Stockholm urban area, 17 of the 54 pharmaceuticals studied had calculated concentrations higher than 10 ng/L. Model agreement with monitored values had an r2 = 0.62 for predicted concentrations and an r2 = 0.95 for predicted disposed amounts to sea.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Oceanos e Mares , Preparações Farmacêuticas/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Recursos Hídricos , Exposição Ambiental/análise , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...