Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961679

RESUMO

In a previous in vivo study, adult male fathead minnows (Pimephales promelas) were exposed via water for 4 days to 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol). The present study expands on the evaluation of molecular responses to this perfluoro-alcohol by analyzing 26 male fathead minnow liver RNA samples from that study (five from each test concentration: 0, 0.018, 0.051, 0.171, and 0.463 mg FC8-diol/L) using fathead minnow EcoToxChips Ver. 1.0. EcoToxChips are a quantitative polymerase chain reaction array that allows for simultaneous measurement of >375 species-specific genes of toxicological interest. Data were analyzed with the online tool EcoToxXplorer. Among the genes analyzed, 62 and 96 were significantly up- and downregulated, respectively, by one or more FC8-diol treatments. Gene expression results from the previous study were validated, showing an upregulation of vitellogenin mRNA (vtg) and downregulation of insulin-like growth factor 1 mRNA (igf1). Additional genes related to estrogen receptor activation including esr2a (estrogen receptor 2a) and esrrb (estrogen related receptor beta) were also affected, providing further confirmation of the estrogenic nature of FC8-diol. Furthermore, genes involved in biological pathways related to lipid and carbohydrate metabolism, innate immune response, endocrine reproduction, and endocrine thyroid were significantly affected. These results both add confidence in the use of the EcoToxChip tool for inferring chemical mode(s) of action and provide further insights into the possible biological effects of FC8-diol. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36800546

RESUMO

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Animais , Estrogênios/metabolismo , Estrona/metabolismo , Ácidos Alcanossulfônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...