Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vopr Virusol ; 69(3): 219-230, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996371

RESUMO

INTRODUCTION: Specific prevention of a number of infectious diseases has been introduced into the vaccination schedule. The production of immunoprophylactic drugs, in order to establish standard properties, including safety and specific effectiveness, requires strict adherence to manufacturing regulations, and the reliability of the results obtained requires monitoring of these parameters. The specific effectiveness of vaccine preparations is standardized according to the indicators of stimulation of specific antibody response formed in the body of vaccinated model biological objects. OBJECTIVE: Determination of the immune reactivity of white mice to vaccination with the QazVac vaccine to establish the possibility of using them as a biological model in assessing the immunogenicity of the vaccine instead of Syrian hamsters. MATERIALS AND METHODS: The immune reactivity of model animals was assessed by the seroconversion rate, dynamics of antibody titers to the SARS-CoV-2 virus formed in the body after vaccination with the test vaccine. In the case of seropositivity of animals before administration of vaccine or placebo, the level of immune reactivity was calculated by the difference in antibody titers between control and vaccinated animals or by the difference in antibody titers before and after immunization. Specific antibodies were detected and their titer was determined using a neutralization reaction. RESULTS: The research results showed that the tested biological models had approximately the same immune reactivity to the administration of the QazVac vaccine, confirmed by the level and dynamics of antibody titers. When analyzing the fold increase in antibody titers in comparison to those of control animals, Syrian hamsters were more reactive compared to mice. But SPF white mice were standardized in their lack of the immune reactivity to SARS-CoV-2 virus before the immunization. CONCLUSION: The data obtained indicate that the immune reactivity of white mice to the administration of the QazVac vaccine in terms of the rate and dynamics of the formation of virus-neutralizing antibodies is approximately equivalent to the immune reactivity of Syrian hamsters. Before immunization with the vaccine, SPF white mice, in contrast to Syrian hamsters, do not have humoral immunity specific to the SARS-CoV-2 virus. The immune reactivity equivalent to that observed of Syrian hamsters and the absence of antibodies to the SARS-CoV-2 virus at a baseline indicate the superiority of the use of white mice in assessing the immunogenicity of vaccines against COVID-19 and/or obtaining specific factors of humoral immunity.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados , Animais , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Cricetinae , Mesocricetus , Imunogenicidade da Vacina , Humanos , Modelos Animais de Doenças , Imunidade Humoral , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia
2.
Vopr Virusol ; 68(6): 513-525, 2023 Dec 26.
Artigo em Russo | MEDLINE | ID: mdl-38156567

RESUMO

INTRODUCTION: At the beginning of December 2019, humanity has faced a new problem caused by coronavirus. In Hubei province of central China, epidemic events associated with severe primary viral pneumonia in humans began to develop. The isolated etiological agent was identified as a representative of Coronaviridae family. The global pandemic associated with the new coronavirus infection, acute respiratory syndrome type 2 (Severe acute respiratory syndrome 2, SARS-CoV-2), has become a challenge for humanity. OBJECTIVE: In our work, we assessed the replicative ability and pathogenesis of the SARS-CoV-2 virus in hamsters. MATERIALS AND METHODS: Syrian hamsters (n=16) randomly divided into two groups were used in experiment. The first group was infected intranasally with the SARS-CoV-2 virus, strain SARS-CoV-2/human/KAZ/KZ_Almaty/2020 deposited in GenBank under number MZ379258.1. The second group remained as a control group. Clinical manifestations of the disease in hamsters were observed within 14 days. Samples were collected on days 3, 5, 7, 9, 12, and 14 postinfection. The obtained samples were tested for viral isolation in cell culture, histological examination and analysis of viral RNA by RT-PCR. RESULTS: SARS-CoV-2 virus isolates showed efficient replication in the lungs of hamsters, causing pathological lung lesions in animals infected intranasally. Clinical manifestations of the disease in hamsters infected with this virus were characterized by a decrease in temperature and body weight, wetness and ruffled fur, and frequent stroking of the nasal planum. High virus titers were observed following the virus isolation in cell cultures from nasal, oral swabs and lungs of animals infected intranasally. Pathological autopsy demonstrated pathological changes in the lungs. Moreover, transmission by airborne droplets has been established when a healthy hamster was kept together with animals infected using the intranasal method. CONCLUSION: In conclusion, our study showed that the Syrian hamster model is a useful tool for studying the SARS-CoV-2 pathogenesis, as well as testing vaccine candidates against acute respiratory syndrome type 2.


Assuntos
COVID-19 , Coronaviridae , Pneumonia Viral , Cricetinae , Animais , Humanos , SARS-CoV-2 , COVID-19/patologia , Pulmão , Mesocricetus , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...