Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(3): e55536, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36705069

RESUMO

The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells. In the presence of a TCR-engaging signal, both cGAS and STING activation switches T cells into type I interferon-producing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGAS-STING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGAS-STING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGAS-STING-targeted immunotherapies.


Assuntos
Interferon Tipo I , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Antivirais , Linfócitos T , Imunidade Inata
2.
Front Immunol ; 13: 1074440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578489

RESUMO

Necroptosis is a form of regulated cell death that can occur downstream of several immune pathways. While previous studies have shown that dysregulated necroptosis can lead to strong inflammatory responses, little is known about the identity of the endogenous molecules that trigger these responses. Using a reductionist in vitro model, we found that soluble TNF is strongly released in the context of necroptosis. On the one hand, necroptosis promotes TNF translation by inhibiting negative regulatory mechanisms acting at the post-transcriptional level. On the other hand, necroptosis markedly enhances TNF release by activating ADAM proteases. In studying TNF release at single-cell resolution, we found that TNF release triggered by necroptosis is activated in a switch-like manner that exceeds steady-state TNF processing in magnitude and speed. Although this shedding response precedes massive membrane damage, it is closely associated with lytic cell death. Further, we found that lytic cell death induction using a pore-forming toxin also triggers TNF shedding, indicating that the activation of ADAM proteases is not strictly related to the necroptotic pathway but likely associated with biophysical changes of the cell membrane upon lytic cell death. These results demonstrate that lytic cell death, particularly necroptosis, is a critical trigger for TNF release and thus qualify TNF as a necroptosis-associated alarmin.


Assuntos
Alarminas , Apoptose , Humanos , Necrose , Necroptose , Fator de Necrose Tumoral alfa/metabolismo , Peptídeo Hidrolases
3.
Nature ; 609(7927): 590-596, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002575

RESUMO

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Assuntos
Acetilmuramil-Alanil-Isoglutamina , Proteína Adaptadora de Sinalização NOD2 , Fosfotransferases (Aceptor do Grupo Álcool) , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Bactérias/química , Bactérias/imunologia , Parede Celular/química , Hexosaminas/biossíntese , Imunidade Inata , Macrófagos/enzimologia , Macrófagos/imunologia , Camundongos , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/química , Peptidoglicano/imunologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
Front Immunol ; 13: 880413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634291

RESUMO

Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3'repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5' flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Animais , Camundongos , Malformações do Sistema Nervoso/patologia , Nucleotidiltransferases/metabolismo , Retroelementos , Replicação Viral
5.
J Biol Chem ; 295(52): 18065-18075, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33082141

RESUMO

TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding.


Assuntos
Proteínas ADAM/metabolismo , Genes Reporter , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Proteína Quinase C/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM/genética , Células HEK293 , Humanos , Proteína Quinase C/genética , Proteólise , Fator de Necrose Tumoral alfa/genética
6.
J Chromatogr A ; 1317: 193-8, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24011728

RESUMO

In this note the feasibility of a polyamine-based capillary coating, polyE-323, for capillary electrophoresis (CE) of lipids is explored. PolyE-323 has previously been demonstrated to be suitable to suppress analyte-wall interaction of proteins in CE. However, the full applicability range of polyE-323 has not been exploited yet and it might be useful in the analysis of hydrophobic analytes, such as lipids. In this study, the stability of polyE-323 when using highly organic background electrolytes (BGEs), which are needed to solubilize the lipid analytes, was studied. For this, we used three different lipid samples: sphingomyelin, cardiolipin and a lipid extract from a cell culture. The highly organic BGEs that were used in this study consisted of 94.5% of organic solvents and 5.5% of an aqueous buffer. First, the influence of pure acetonitrile, methanol, propylene carbonate, isopropanol and chloroform on the polyE-323 coating was investigated. Then BGEs were developed and tested, using sphingomyelin and cardiolipin as test analytes in CE-UV experiments. After establishing the best BGEs (in terms of analysis time and repeatability) by CE-UV, sphingomyelin was used as a test analyte to demonstrate that method was also suitable for CE with mass-spectrometry detection (CE-MS). The LOD of sphingomyelin was estimated to be 100 nM and its migration time repeatability was 1.3%. The CE-MS analysis was further applied on a lipid extract obtained from human glioblastoma cells, which resulted in the separation and detection of a multitude of putative lipids. The results of our feasibility study indicate that CE systems based on polyE-323 coated capillaries and highly organic BGEs are promising for fast electromigration-based analysis of lipids.


Assuntos
Eletroforese Capilar/instrumentação , Lipídeos/análise , Poliaminas/química , Eletroforese Capilar/métodos , Limite de Detecção , Lipídeos/isolamento & purificação , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...