Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(11): 102500, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152751

RESUMO

Coronavirus disease represents a real threat to the global population, and understanding the biological features of the causative virus, that is, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is imperative for mitigating this threat. Analyses of proteins such as primary receptors and coreceptors (cofactors), which are involved in the entry of SARS-CoV-2 into host cells, will provide important clues to help control the virus. Here, we identified host cell membrane protein candidates present in proximity to the attachment sites of SARS-CoV-2 spike proteins, using proximity labeling and proteomic analysis. The identified proteins represent key candidate factors that may be required for viral entry. We found SARS-CoV-2 host protein DPP4, cell adhesion protein Cadherin 17, and glycoprotein CD133 colocalized with cell membrane-bound SARS-CoV-2 spike proteins in Caco-2 cells and thus showed potential as candidate factors. Additionally, our analysis of the experimental infection of HEK293T cells with a SARS-CoV-2 pseudovirus indicated a 2-fold enhanced infectivity in the CD133-ACE2-coexpressing HEK293T cells compared to that in HEK293T cells expressing ACE-2 alone. The information and resources regarding these coreceptor labeling and analysis techniques could be utilized for the development of antiviral agents against SARS-CoV-2 and other emerging viruses.


Assuntos
COVID-19 , Proteínas de Membrana , Glicoproteína da Espícula de Coronavírus , Ligação Viral , Humanos , Enzima de Conversão de Angiotensina 2 , Células CACO-2 , Células HEK293 , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteômica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Receptores Virais/metabolismo
2.
J Proteome Res ; 20(7): 3519-3531, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34115501

RESUMO

Extracellular vesicles (EVs) are biomarkers and mediators of intercellular communication. In biological samples, EVs are secreted by various types of cells. The proteomic identification of proteins expressed in EVs has potential to contribute to research and clinical applications, particularly for cancer. In this study, the proximity-labeling method-based proteomic approach was used for EV identification, labeling membrane components proximal to a given molecule on the EV membrane surface. Due to the small labeling range, proteins on the surface of the same EVs are likely to be labeled by selecting a given EV surface antigen. The protein group of cancer cell-secreted EV (cEV), which abundantly expresses a close homologue of L1 (CHL1), was examined using a model mouse for lung cancer (LC). cEV-expressed proteins were identified by proteomic analysis of enzyme-mediated activation of radical sources by comparing serum EVs from wild-type and LC mice. SLC4A1 was found to be co-expressed in CHL1-expressing EVs, highlighting EVs expressing both CHL1 and SLC4A1 as candidates for cEVs. Serum EVs expressing both CHL1 and caspase 14 were significantly elevated in LC patients compared with healthy individuals. Thus, the combination of proximity labeling and proteomic analysis allows for effective EV identification.


Assuntos
Vesículas Extracelulares , Proteômica , Animais , Proteína 1 de Troca de Ânion do Eritrócito , Biomarcadores , Moléculas de Adesão Celular , Humanos , Camundongos , Proteínas
3.
Cancer Sci ; 110(8): 2607-2619, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228215

RESUMO

Cancer-specific antigens expressed in the cell membrane have been used as targets for several molecular targeted strategies in the last 20 years with remarkable success. To develop more effective cancer treatments, novel targets and strategies for targeted therapies are needed. Here, we examined the cancer cell membrane-resident "cis-bimolecular complex" as a possible cancer target (cis-bimolecular cancer target: BiCAT) using proximity proteomics, a technique that has attracted attention in the last 10 years. BiCAT were detected using a previously developed method termed the enzyme-mediated activation of radical source (EMARS), to label the components proximal to a given cell membrane molecule. EMARS analysis identified some BiCAT, such as close homolog of L1 (CHL1), fibroblast growth factor 3 (FGFR3) and α2 integrin, which are commonly expressed in mouse primary lung cancer cells and human lung squamous cell carcinoma cells. Analysis of cancer specimens from 55 lung cancer patients revealed that CHL1 and α2 integrin were highly co-expressed in almost all cancer tissues compared with normal lung tissues. As an example of BiCAT application, in vitro simulation of effective drug combinations used for multiple drug treatment strategies was performed using reagents targeted to BiCAT molecules. The combination treatment based on BiCAT information moderately suppressed cancer cell proliferation compared with single administration, suggesting that the information about BiCAT in cancer cells is useful for the appropriate selection of the combination among molecular targeted reagents. Thus, BiCAT has the potential to contribute to several molecular targeted strategies in future.


Assuntos
Membrana Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteômica/métodos
4.
Biochem Biophys Res Commun ; 501(4): 982-987, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29775614

RESUMO

Close homolog of L1 (CHL1) and its truncated form mainly play crucial roles in mouse brain development and neural functions. Herein, we newly identified that truncated form of CHL1 is produced and released from lung tumor tissue in a mouse model expressing human EML4-ALK fusion gene. Both western blot and direct ELISA analysis revealed that mouse CHL1 level in serum (including serum extracellular vesicles) was significantly elevated in EML4-ALK transgenic mice. The correlation between the tumor size and the amount of CHL1 secretion could be examined in this study, and showed a significant positive correlation in a tumor size-dependent manner. Considering these results, the measurement of circulating CHL1 level may contribute to assess a tumor progression in human lung tumor patients.


Assuntos
Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares/sangue , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Carga Tumoral
5.
Cell Rep ; 22(13): 3548-3561, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590622

RESUMO

In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function.


Assuntos
Glicoproteínas de Membrana/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Acuidade Visual/fisiologia , Animais , Camundongos , Receptores de Glutamato Metabotrópico/metabolismo , Células Bipolares da Retina/metabolismo , Sinapses/genética , Sinapses/metabolismo , Acuidade Visual/genética
6.
Int J Oncol ; 52(3): 679-686, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29393397

RESUMO

Radiation therapy can result in severe side-effects, including the development of radiation resistance. The aim of this study was to validate the use of oxygen nanobubble water to overcome resistance to radiation in cancer cell lines via the suppression of the hypoxia-inducible factor 1-α (HIF­1α) subunit. Oxygen nanobubble water was created using a newly developed method to produce nanobubbles in the single-nanometer range with the ΣPM-5 device. The size and concentration of the oxygen nanobubbles in the water was examined using a cryo-transmission electron microscope. The nanobubble size was ranged from 2 to 3 nm, and the concentration of the nanobubbles was calculated at 2x1018 particles/ml. Cell viability and HIF-1α levels were evaluated in EBC­1 lung cancer and MDA­MB­231 breast cancer cells treated with or without the nanobubble water and radiation under normoxic and hypoxic conditions in vitro. The cancer cells grown in oxygen nanobubble-containing media exhibited a clear suppression of hypoxia-induced HIF­1α expression compared to the cells grown in media made with distilled water. Under hypoxic conditions, the EBC­1 and MDA­MB231 cells displayed resistance to radiation compared to the cells cultured under normoxic cells. The use of oxygen nanobubble medium significantly suppressed the hypoxia-induced resistance to radiation compared to the use of normal medium at 2, 6, 10 and 14 Gy doses. Importantly, the use of nanobubble media did not affect the viability and radiation sensitivity of the cancer cell lines, or the non­cancerous cell line, BEAS­2B, under normoxic conditions. This newly created single-nanometer range oxygen nanobubble water, without any additives, may thus prove to be a promising agent which may be used to overcome the hypoxia-induced resistance of cancer cells to radiation via the suppression of HIF-1α.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/radioterapia , Oxigênio/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Oxigênio/química , Água/química
7.
PLoS One ; 12(11): e0186899, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099843

RESUMO

We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Água/química
8.
J Neurosci ; 37(41): 9889-9900, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28899920

RESUMO

Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1-/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development.SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate reception, or transduction channel function. We found that the TRPM1 transduction channel is required for the development of rod bipolar cells and their synaptic formation with subsequent neurons, independently of glutamate transmission. This study advances our understanding of neurotransmission-mediated retinal circuit refinement.


Assuntos
Células Amácrinas/fisiologia , Retina/crescimento & desenvolvimento , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Canais de Cátion TRPM/fisiologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia , Animais , Channelrhodopsins , Dendritos/fisiologia , Dendritos/ultraestrutura , Feminino , Ácido Glutâmico/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Retina/citologia , Transmissão Sináptica/fisiologia , Canais de Cátion TRPM/genética , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 1 de Transporte de Glutamato/genética
9.
Sci Rep ; 7(1): 5540, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717219

RESUMO

In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.


Assuntos
Retina/citologia , Células Horizontais da Retina/fisiologia , Animais , Conexinas/genética , Eletrofisiologia/métodos , Luz , Camundongos Transgênicos , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Sinapses/fisiologia , Visão Ocular/genética
10.
J Neurosci ; 37(8): 2073-2085, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28115485

RESUMO

Cellular asymmetries play crucial roles in development and organ function. The planar cell polarity (PCP) signaling pathway is involved in the establishment of cellular asymmetry within the plane of a cell sheet. Inner ear sensory hair cells (HCs), which have several rows of staircase-like stereocilia and one kinocilium located at the vertex of the stereocilia protruding from the apical surface of each HC, exhibit a typical form of PCP. Although connections between cilia and PCP signaling in vertebrate development have been reported, their precise nature is not well understood. During inner ear development, several ciliary proteins are known to play a role in PCP formation. In the current study, we investigated a functional role for intestinal cell kinase (Ick), which regulates intraflagellar transport (IFT) at the tip of cilia, in the mouse inner ear. A lack of Ick in the developing inner ear resulted in PCP defects in the cochlea, including misorientation or misshaping of stereocilia and aberrant localization of the kinocilium and basal body in the apical and middle turns, leading to auditory dysfunction. We also observed abnormal ciliary localization of Ift88 in both HCs and supporting cells. Together, our results show that Ick ciliary kinase is essential for PCP formation in inner ear HCs, suggesting that ciliary transport regulation is important for PCP signaling.SIGNIFICANCE STATEMENT The cochlea in the inner ear is the hearing organ. Planar cell polarity (PCP) in hair cells (HCs) in the cochlea is essential for mechanotransduction and refers to the asymmetric structure consisting of stereociliary bundles and the kinocilium on the apical surface of the cell body. We reported previously that a ciliary kinase, Ick, regulates intraflagellar transport (IFT). Here, we found that loss of Ick leads to abnormal localization of the IFT component in kinocilia, PCP defects in HCs, and hearing dysfunction. Our study defines the association of ciliary transport regulation with PCP formation in HCs and hearing function.


Assuntos
Polaridade Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Ciliadas Auditivas Internas/fisiologia , Audição/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Embrião de Mamíferos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Células Ciliadas Auditivas Internas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Emissões Otoacústicas Espontâneas/genética , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Proteínas Serina-Treonina Quinases/genética
11.
Nature ; 541(7635): 96-101, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002407

RESUMO

Monocytes and macrophages comprise a variety of subsets with diverse functions. It is thought that these cells play a crucial role in homeostasis of peripheral organs, key immunological processes and development of various diseases. Among these diseases, fibrosis is a life-threatening disease of unknown aetiology. Its pathogenesis is poorly understood, and there are few effective therapies. The development of fibrosis is associated with activation of monocytes and macrophages. However, the specific subtypes of monocytes and macrophages that are involved in fibrosis have not yet been identified. Here we show that Ceacam1+Msr1+Ly6C-F4/80-Mac1+ monocytes, which we term segregated-nucleus-containing atypical monocytes (SatM), share granulocyte characteristics, are regulated by CCAAT/enhancer binding protein ß (C/EBPß), and are critical for fibrosis. Cebpb deficiency results in a complete lack of SatM. Furthermore, the development of bleomycin-induced fibrosis, but not inflammation, was prevented in chimaeric mice with Cebpb-/- haematopoietic cells. Adoptive transfer of SatM into Cebpb-/- mice resulted in fibrosis. Notably, SatM are derived from Ly6C-FcεRI+ granulocyte/macrophage progenitors, and a newly identified SatM progenitor downstream of Ly6C-FcεRI+ granulocyte/macrophage progenitors, but not from macrophage/dendritic-cell progenitors. Our results show that SatM are critical for fibrosis and that C/EBPß licenses differentiation of SatM from their committed progenitor.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Progenitoras de Granulócitos e Macrófagos/citologia , Monócitos/classificação , Monócitos/metabolismo , Fibrose Pulmonar/patologia , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Bleomicina/toxicidade , Proteína beta Intensificadora de Ligação a CCAAT/deficiência , Proteína beta Intensificadora de Ligação a CCAAT/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Células Dendríticas/citologia , Modelos Animais de Doenças , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Inflamação , Masculino , Camundongos , Terapia de Alvo Molecular/tendências , Monócitos/patologia , Monócitos/transplante , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/prevenção & controle , Receptores de IgE/metabolismo , Receptores Depuradores Classe A/metabolismo
12.
J Biol Chem ; 291(47): 24465-24474, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27681595

RESUMO

In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases.


Assuntos
Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cílios/genética , Cílios/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Mutação , Opsinas/genética , Transporte Proteico/genética , Degeneração Retiniana/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Gastroenterology ; 150(7): 1620-1632, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965517

RESUMO

BACKGROUND & AIMS: Attachment of a fucose molecule to the innermost N-glycan in a glycoprotein (core fucosylation) regulates the activity of many growth factor receptors and adhesion molecules. The process is catalyzed by α1-6 fucosyltransferase (FUT8) and required for immune regulation, but it is not clear whether this process is dysregulated during disease pathogenesis. We investigated whether core fucosylation regulates T-cell activation and induction of colitis in mice, and is altered in patients with inflammatory bowel disease (IBD). METHODS: Biopsy samples were collected from inflamed and noninflamed regions of intestine from patients (8 with Crohn's disease, 4 with ulcerative colitis, and 4 without IBD [controls]) at Osaka University Hospital. Colitis was induced in FUT8-deficient (Fut8(-/-)) mice and Fut8(+/+) littermates by administration of trinitrobenzene sulfonic acid. Intestinal tissues were collected and analyzed histologically. Immune cells were collected and analyzed by lectin flow cytometry, immunofluorescence, and reverse-transcription polymerase chain reaction, as well as for production of cytokines and levels of T-cell receptor (TCR) in lipid raft fractions. T-cell function was analyzed by intraperitoneal injection of CD4(+)CD62L(+) naïve T cells into RAG2-deficient mice. RESULTS: Levels of core fucosylation were increased on T cells from mice with colitis, compared with mice without colitis, as well as on inflamed mucosa from patients with IBD, compared with their noninflamed tissues or tissues from control patients. Fut8(-/-) mice developed less-severe colitis than Fut8(+/+) mice, and T cells from Fut8(-/-) mice produced lower levels of T-helper 1 and 2 cytokines. Adoptive transfer of Fut8(-/-) T cells to RAG2-deficient mice reduced the severity of colitis. Compared with CD4(+) T cells from Fut8(+/+) mice, those from Fut8(-/-) mice expressed similar levels of TCR and CD28, but these proteins did not contain core fucosylation. TCR complexes formed on CD4(+) T cells from Fut8(-/-) mice did not signal properly after activation and were not transported to lipid rafts. CONCLUSIONS: Core fucosylation of the TCR is required for T-cell signaling and production of inflammatory cytokines and induction of colitis in mice. Levels of TCR core fucosylation are increased on T cells from intestinal tissues of patients with IBD; this process might be blocked as a therapeutic strategy.


Assuntos
Colite Ulcerativa/imunologia , Colite/imunologia , Doença de Crohn/imunologia , Fucosiltransferases/metabolismo , Linfócitos T/metabolismo , Transferência Adotiva , Adulto , Animais , Biópsia , Estudos de Casos e Controles , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Feminino , Fucose/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Ativação Linfocitária , Masculino , Camundongos , Transdução de Sinais
14.
J Gastroenterol ; 51(4): 357-69, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26349931

RESUMO

BACKGROUND: Oligosaccharide structures and their alterations have important roles in modulating intestinal inflammation. N-Acetylglucosaminyltransferase V (GnT-V) is involved in the biosynthesis of N-acetylglucosamine (GlcNAc) by ß1,6-branching on N-glycans and is induced in various pathologic processes, such as inflammation and regeneration. GnT-V alters host immune responses by inhibiting the functions of CD4(+) T cells and macrophages. The present study aimed to clarify the role of GnT-V in intestinal inflammation using GnT-V transgenic mice. METHODS: Colitis severity was compared between GnT-V transgenic mice and wild-type mice. ß1,6-GlcNAc levels were investigated by phytohemagglutinin-L4 lectin blotting and flow cytometry. We investigated phagocytosis of macrophages by measuring the number of peritoneal-macrophage-ingested fluorescent latex beads by flow cytometry. Cytokine production in the culture supernatant of mononuclear cells from the spleen, mesenteric lymph nodes, and bone-marrow-derived macrophages was determined by enzyme-linked immunosorbent assay. Clodronate liposomes were intravenously injected to deplete macrophages in vivo. Chronic-colitis-associated tumorigenesis was assessed after 9 months of repeated administration of dextran sodium sulfate (DSS). RESULTS: DSS-induced colitis and colitis induced by trinitrobenzene sulfonic acid were markedly exacerbated in GnT-V transgenic mice compared with wild-type mice. Production of interleukin-10 and phagocytosis of macrophages were significantly impaired in GnT-V transgenic mice compared with wild-type mice. Clodronate liposome treatment to deplete macrophages blocked the exacerbation of DSS-induced colitis and impairment of interleukin-10 production in GnT-V transgenic mice. Chronic-colitis-associated tumorigenesis was significantly increased in GnT-V transgenic mice. CONCLUSIONS: Overexpression of GnT-V exacerbated murine experimental colitis by inducing macrophage dysfunction, thereby enhancing colorectal tumorigenesis.


Assuntos
Colite/patologia , Neoplasias do Colo/patologia , Macrófagos/patologia , N-Acetilglucosaminiltransferases/genética , Animais , Ácido Clodrônico/farmacologia , Colite/genética , Neoplasias do Colo/genética , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Citometria de Fluxo , Inflamação/genética , Inflamação/patologia , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Índice de Gravidade de Doença , Ácido Trinitrobenzenossulfônico/toxicidade
15.
Sci Rep ; 5: 16180, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26530779

RESUMO

Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order.

16.
Genes Cells ; 20(5): 408-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25757744

RESUMO

Mef2 transcription factors play a crucial role in cardiac and skeletal muscle differentiation. We found that Mef2d is highly expressed in the mouse retina and its loss causes photoreceptor degeneration similar to that observed in human retinitis pigmentosa patients. Electroretinograms (ERGs) were severely impaired in Mef2d-/- mice. Immunohistochemistry showed that photoreceptor and bipolar cell synapse protein levels severely decreased in the Mef2d-/- retina. Expression profiling by microarray analysis showed that Mef2d is required for the expression of various genes in photoreceptor and bipolar cells, including cone arrestin, Guca1b, Pde6h and Cacna1s, which encode outer segment and synapse proteins. We also observed that Mef2d synergistically activates the cone arrestin (Arr3) promoter with Crx, suggesting that functional cooperation between Mef2d and Crx is important for photoreceptor cell gene regulation. Taken together, our results show that Mef2d is essential for photoreceptor and bipolar cell gene expression, either independently or cooperatively with Crx.


Assuntos
Diferenciação Celular , Fatores de Transcrição MEF2/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Animais , Arrestinas/genética , Diferenciação Celular/genética , Eletrorretinografia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Regiões Promotoras Genéticas , Ligação Proteica , Células Bipolares da Retina/patologia , Células Bipolares da Retina/ultraestrutura , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Sinapses/genética , Sinapses/metabolismo , Transativadores/metabolismo , Transcrição Gênica
17.
EMBO J ; 33(11): 1227-42, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24797473

RESUMO

Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK-deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK-deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT-A, IFT-B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT-B, but not IFT-A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia.


Assuntos
Cílios/metabolismo , Flagelos/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transporte Biológico , Encéfalo/anormalidades , Cílios/genética , Feminino , Flagelos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Cinesinas/genética , Pulmão/anormalidades , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Mutação , Neurônios/citologia , Especificidade de Órgãos , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Retina/citologia , Transdução de Sinais , Células-Tronco/ultraestrutura
18.
Proc Natl Acad Sci U S A ; 108(38): 15846-51, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21911378

RESUMO

Phosphatidylserine (PS) is a relatively minor constituent of biological membranes. Despite its low abundance, PS in the plasma membrane (PM) plays key roles in various phenomena such as the coagulation cascade, clearance of apoptotic cells, and recruitment of signaling molecules. PS also localizes in endocytic organelles, but how this relates to its cellular functions remains unknown. Here we report that PS is essential for retrograde membrane traffic at recycling endosomes (REs). PS was most concentrated in REs among intracellular organelles, and evectin-2 (evt-2), a protein of previously unknown function, was targeted to REs by the binding of its pleckstrin homology (PH) domain to PS. X-ray analysis supported the specificity of the binding of PS to the PH domain. Depletion of evt-2 or masking of intracellular PS suppressed membrane traffic from REs to the Golgi. These findings uncover the molecular basis that controls the RE-to-Golgi transport and identify a unique PH domain that specifically recognizes PS but not polyphosphoinositides.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Endossomos/ultraestrutura , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Fosfatidilserinas/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Células Vero
19.
PLoS One ; 5(1): e8773, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20098743

RESUMO

BACKGROUND: An accumulating body of evidence suggests that Dtnbp1 (Dysbindin) is a key susceptibility gene for schizophrenia. Using the yeast-two-hybrid screening system, we examined the candidate proteins interacting with Dysbindin and revealed one of these candidates to be the transcription factor NF-YB. METHODS: We employed an immunoprecipitation (IP) assay to demonstrate the Dysbindin-NF-YB interaction. DNA chips were used to screen for altered expression of genes in cells in which Dysbindin or NF-YB was down regulated, while Chromatin IP and Reporter assays were used to confirm the involvement of these genes in transcription of Myristoylated alanine-rich protein kinase C substrate (MARCKS). The sdy mutant mice with a deletion in Dysbindin, which exhibit behavioral abnormalities, and wild-type DBA2J mice were used to investigate MARCKS expression. RESULTS: We revealed an interaction between Dysbindin and NF-YB. DNA chips showed that MARCKS expression was increased in both Dysbindin knockdown cells and NF-YB knockdown cells, and Chromatin IP revealed interaction of these proteins at the MARCKS promoter region. Reporter assay results suggested functional involvement of the interaction between Dysbindin and NF-YB in MARCKS transcription levels, via the CCAAT motif which is a NF-YB binding sequence. MARCKS expression was increased in sdy mutant mice when compared to wild-type mice. CONCLUSIONS: These findings suggest that abnormal expression of MARCKS via dysfunction of Dysbindin might cause impairment of neural transmission and abnormal synaptogenesis. Our results should provide new insights into the mechanisms of neuronal development and the pathogenesis of schizophrenia.


Assuntos
Fator de Ligação a CCAAT/genética , Proteínas de Transporte/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Transcrição Gênica/fisiologia , Animais , Sequência de Bases , Fator de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Primers do DNA , Disbindina , Proteínas Associadas à Distrofina , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Substrato Quinase C Rico em Alanina Miristoilada
20.
PLoS One ; 5(1): e8596, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20062533

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and Id3) were rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior.


Assuntos
Axônios , Giro Denteado/metabolismo , Estatmina/metabolismo , Animais , Imunoprecipitação da Cromatina , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Células PC12 , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Gravidez , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatmina/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...