Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833988

RESUMO

This study discusses the genetic mutations that have a significant association with economically important traits that would benefit tea breeders. The purpose of this study was to analyze the leaf quality and SNPs in quality-related genes in the tea plant collection of 20 mutant genotypes growing without nitrogen fertilizers. Leaf N-content, catechins, L-theanine, and caffeine contents were analyzed in dry leaves via HPLC. Additionally, the photochemical yield, electron transport efficiency, and non-photochemical quenching were analyzed using PAM-fluorimetry. The next generation pooled amplicon-sequencing approach was used for SNPs-calling in 30 key genes related to N metabolism and leaf quality. The leaf N content varied significantly among genotypes (p ≤ 0.05) from 2.3 to 3.7% of dry mass. The caffeine content varied from 0.7 to 11.7 mg g-1, and the L-theanine content varied from 0.2 to 5.8 mg g-1 dry leaf mass. Significant positive correlations were detected between the nitrogen content and biochemical parameters such as theanine, caffeine, and most of the catechins. However, significant negative correlations were observed between the photosynthetic parameters (Y, ETR, Fv/Fm) and several biochemical compounds, including rutin, Quercetin-3-O-glucoside, Kaempferol-3-O-rutinoside, Kaempferol-3-O-glucoside, Theaflavin-3'-gallate, gallic acid. From our SNP-analysis, three SNPs in WRKY57 were detected in all genotypes with a low N content. Moreover, 29 SNPs with a high or moderate effect were specific for #316 (high N-content, high quality) or #507 (low N-content, low quality). The use of a linear regression model revealed 16 significant associations; theaflavin, L-theanine, and ECG were associated with several SNPs of the following genes: ANSa, DFRa, GDH2, 4CL, AlaAT1, MYB4, LHT1, F3'5'Hb, UFGTa. Among them, seven SNPs of moderate effect led to changes in the amino acid contents in the final proteins of the following genes: ANSa, GDH2, 4Cl, F3'5'Hb, UFGTa. These results will be useful for further evaluations of the important SNPs and will help to provide a better understanding of the mechanisms of nitrogen uptake efficiency in tree crops.


Assuntos
Camellia sinensis , Catequina , Cafeína/metabolismo , Polimorfismo de Nucleotídeo Único , Camellia sinensis/metabolismo , Catequina/metabolismo , Folhas de Planta/metabolismo , Chá/química , Nitrogênio/metabolismo
2.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376264

RESUMO

Polymerization of methyl methacrylate (MMA) in aqueous collagen (Col) dispersion was studied in the presence of tributylborane (TBB) and p-quinone: 2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ), p-benzoquinone (BQ), duroquinone (DQ), and p-naphthoquinone (NQ). It was found that this system leads to the formation of a grafted cross-linked copolymer. The inhibitory effect of p-quinone determines the amount of unreacted monomer, homopolymer, and percentage of grafted poly(methyl methacrylate) (PMMA). The synthesis combines two approaches to form a grafted copolymer with a cross-linked structure-"grafting to" and "grafting from". The resulting products exhibit biodegradation under the action of enzymes, do not have toxicity, and demonstrate a stimulating effect on cell growth. At the same time, the denaturation of collagen occurring at elevated temperatures does not impair the characteristics of copolymers. These results allow us to present the research as a scaffold chemical model. Comparison of the properties of the obtained copolymers helps to determine the optimal method for the synthesis of scaffold precursors-synthesis of a collagen and poly(methyl methacrylate) copolymer at 60 °C in a 1% acetic acid dispersion of fish collagen with a mass ratio of the components collagen:MMA:TBB:2,5-DTBQ equal to 1:1:0.015:0.25.

3.
Environ Sci Pollut Res Int ; 30(1): 823-836, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904738

RESUMO

To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.


Assuntos
Solo , Oligoelementos , Solo/química , Gelo , Congelamento , Metais , Matéria Orgânica Dissolvida , Bactérias
4.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202386

RESUMO

Pea (Pisum sativum L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown. Here, we compare the symbiotically responsive breeding line 'Triumph' of grain pea with its parental cultivars 'Vendevil' (a donor of high symbiotic responsivity) and 'Classic' (a donor of agriculturally valuable traits) using genome and transcriptome sequencing. We show that 'Triumph' inherited one-fourth of its genome from 'Vendevil', including the genes related to AM and nodule formation, and reveal that under combined inoculation with nodule bacteria and AM fungi, 'Triumph' and 'Vendevil', in contrast to 'Classic', demonstrate similar up-regulation of the genes related to solute transport, hormonal regulation and flavonoid biosynthesis in their roots. We also identify the gene PsGLP2, whose expression pattern distinguishing 'Triumph' and 'Vendevil' from 'Classic' correlates with difference within the promoter region sequence, making it a promising marker for the symbiotic responsivity trait. The results of this study may be helpful for future molecular breeding programs aimed at creation of symbiotically responsive cultivars of pea.

5.
Sci Total Environ ; 853: 158701, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36108862

RESUMO

Extensive studies have been performed on wildfire impact on terrestrial and aquatic ecosystems in the taiga biome, however consequences of wildfires in the tundra biome remain poorly understood. In such a biome, permafrost peatlands occupy a sizable territory in the Northern Hemisphere and present an extensive and highly vulnerable storage of organic carbon. Here we used an experimental approach to model the impact of ash produced from burning of main tundra organic constituents (i.e., moss, lichen and peat) on surrounding aquatic ecosystems. We studied the chemical composition of aqueous leachates produced during short-term (1 week) interaction of ash with distilled water and organic-rich lake water at 5 gsolid L-1 and 20 °C. The addition of ash enriched the fluid phase in major cations (i.e., Na, Ca, Mg), macro- (i.e., P, K, Si) and micronutrients (i.e., Mn, Fe, Co, Ni, Zn, Mo). This enrichment occurred over <2 days of experiment. Among 3 studied substrates, moss ash released the largest amount of macro- and micro-components into the aqueous solution. To place the obtained results in the environmental context of a peatbog watershed, we assume a fire return interval of 56 years and that the entire 0-10 cm of upper peat is subjected to fire impact. These mass balance calculations demonstrated that maximal possible delivery of elements from ash after soil burning to the hydrological network is negligibly small (<1-2 %) compared to the annual riverine export flux and element storage in thermokarst lakes. As such, even a 5-10 fold increase in tundra wildfire frequency may not sizably modify nutrient and metal fluxes and pools in the surrounding aquatic ecosystems. This result requires revisiting the current paradigm on the importance of wildfire impact on permafrost peatlands and calls a need for experimental work on other ecosystem compartments (litter, shrubs, frozen peat) which are subjected to fire events.


Assuntos
Água Potável , Pergelissolo , Ecossistema , Tundra , Solo/química , Carbono/análise , Lagos , Micronutrientes
6.
Environ Sci Process Impacts ; 24(9): 1443-1459, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35226006

RESUMO

The fate of organic carbon (OC), nutrients and metals accumulated in thawing permafrost ice is at the forefront of environmental studies in the Arctic. In contrast to a fairly good understanding of the chemical nature of dissolved OC (DOC) and metals in surface Arctic waters, the speciation and colloidal status of solutes accommodated in the dispersed ground ice remain virtually unknown. Here we used a size fractionation procedure (centrifugal ultrafiltration) to quantify the proportion of colloidal (3 kDa to 0.45 µm) and conventionally dissolved low molecular weight (LMW<3 kDa) fractions of DOC, and major and trace elements in the porewater and ice of 5 peat cores sampled along a 400 km permafrost and climate gradient in the largest peatland in the world, the Western Siberian Lowland (WSL). We discovered that the strong (a factor of 2 to 10) increase in the total dissolved (<0.45 µm) concentration of DOC and most major and trace elements in the peat ice relative to the peat porewater from the thawed layer was essentially linked to an increase in the LMW<3 kDa fraction. This increase in the potentially bioavailable fraction in the peat ice relative to the porewater was especially pronounced for DOC, P and many trace elements including metal micronutrients, and was observed throughout all permafrost zones. This contrasted with element distribution in the upper (thaw) layer, where the majority of these elements were present in the colloidal pool. Following previous experiments on permafrost peatland surface waters, we hypothesized that the freeze-thaw cycles of peat porewater were responsible for generation of the LMW fraction in the bottom part of the peat core. Results of this study demonstrate that carbon, and macro- and micro-nutrients as well as trace metals in ground ice of permafrost peatlands are essentially present in a low molecular weight (<3 kDa) and potentially bioavailable form that can strongly impact the riverine export fluxes of solutes during permafrost thaw.


Assuntos
Pergelissolo , Oligoelementos , Carbono/análise , Coloides , Gelo , Pergelissolo/química , Sibéria , Solo
7.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800829

RESUMO

Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.


Assuntos
Antineoplásicos/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Imunoterapia/efeitos adversos , Radioterapia/efeitos adversos , Transcrição Gênica , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos da radiação , Antineoplásicos/farmacologia , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Inflamação , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/radioterapia , Fatores de Transcrição STAT/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Transcrição Gênica/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
8.
Chemosphere ; 266: 128953, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33223213

RESUMO

The physical and chemical consequences of massive ground ice (wedges) melt upon permafrost thaw is one of the central issues of environmental research linked to climate warming in the Arctic. Little is known about the chemical properties of dispersed ground ice abundant throughout permafrost peatlands that can easily melt with increasing active layer thickness (ALT). This is especially pertinent in continental lowlands, that account for sizeable areas of the Arctic, and contain high amount of organic carbon in both solid (peat) and liquid (porewater) phases. Here we studied 8 peat cores (0-130 cm depth)-comprised of porewater from the active layer (0-45 cm) as well as ice dispersed in frozen peat (40-130 cm)-across a latitudinal profile of Western Siberia Lowland (WSL) extending from discontinuous into continuous permafrost zones. Dissolved Organic Carbon (DOC), alkali and alkaline-earth metals (Ca, Mg, Sr, Ba, Li, Rb, Cs), sulfate, phosphorus, some trace elements (Al, Fe, Mn, Zn, Ni, Co, V, As, Y, REE, Zr, Hf, U) were sizably [more than 3 times] enriched in peat ice compared to peat porewaters from the active layer. In most sampled cores, there was a local maximum of strong enrichment (up to factors between 14 and 58) in DOC, P, Ca, Mg, Mn, Fe, Sr, As located 30-50 cm below the active layer. This maximum likely occurred due to solute concentration during full freezing of the soil column during winter. There was a sizable correlation between DOC, Al, Fe and other major and trace element concentrations that suggests strong control of organic complexes and organo-mineral (Al, Fe) colloids on element migration throughout the peat profile. The pool of C, major cations and trace metals in peat ice (40-130 cm) was approximately 3-55 times higher than the pool of these elements in porewaters from the active layer (0-40 cm). A 1-m increase of the ALT over the next 100 years is capable of mobilizing 58 ± 38 Tg of DOC from soil ice into the rivers and lakes of the WSL latitudinal belt (63-67 °N). This fast lateral export of C (3.7 ± 2.7 t C km-2 y-1) may double current C yields in WSL rivers (3.4 ± 1.3 t C km-2 y-1). A strong increase (150-200%) in riverine export of Zn, P and Cs may also occur while other micronutrients (Fe, Ni, Co, Ba, Mo, Rb) and toxicants (Cd, As, Al) may be affected to a lesser degree (20-30% increase). We propose a global peat ice inventory in permafrost regions is essential for assessing the consequences of permafrost thaw on surface aquatic systems.


Assuntos
Pergelissolo , Regiões Árticas , Carbono/análise , Gelo , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...