Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15446, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965366

RESUMO

The ice-ocean drag coefficient C w and turning angle θ w are crucial parameters in ice-ocean coupled simulations, determining the transfer of momentum between the two media. These parameters are often treated as constants regardless of the static stability at the ice-ocean interface. This study investigates the variability of C w and θ w based on direct observations of thermal and kinetic energy balance. The observations were conducted beneath multiyear ice packs widely across the central Arctic during a period transitioning from ablation to refreezing, indicating significant variability of C w = 1-130 × 10-3 and θ w = - 19-1° at 5 m depth. Comparing different stations, the observations suggest a pronounced dependence of C w on the stability parameter ( µ ) resulting from mechanical and buoyant forcing. C w rapidly decays with increasing µ , indicating that the ice-to-ocean momentum transfer is enhanced for neutral or unstable conditions, while it is weakened for stable conditions. In addition, observed vertical profiles of currents revealed that | θ w | tends to be smaller for unstable and larger for stable conditions. We suggest that numerical simulations using constant values could result in an underestimate of large-scale near-surface currents during the ice growing period.

2.
Int J Artif Organs ; : 3913988241254978, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853663

RESUMO

INTRODUCTION: A feared complication of an acute myocardial infarction (AMI) is cardiac arrest (CA). Even if return of spontaneous circulation is achieved, cardiogenic shock (CS) is common. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) supports patients with CS and is often used in conjunction with an Impella device (2.5 and CP) to off-load the left ventricle, although limited evidence supports this approach. METHODS: The goal of this study was to determine whether a mortality difference was observed in VA-ECMO alone versus VA-ECMO with Impella (ECPELLA) in patients with CS from AMI and CA. A retrospective chart review of 50 patients with AMI-CS and CA and were supported with VA-ECMO (n = 34) or ECPELLA (n = 16) was performed. The primary outcome was all-cause mortality at 6-months from VA-ECMO or Impella implantation. Secondary outcomes included in-hospital mortality and complication rates between both cohorts and intensive care unit data. RESULTS: Baseline characteristics were similar, except patients with ST-elevation myocardial infarction were more likely to be in the VA-ECMO group (p = 0.044). The ECPELLA cohort had significantly worse survival after VA-ECMO (SAVE) score (p = 0.032). Six-month all-cause mortality was not significantly different between the cohorts, even when adjusting for SAVE score. Secondary outcomes were notable for an increased rate of minor complications without an increased rate of major complications in the ECPELLA group. CONCLUSIONS: Randomized trials are needed to determine if a mortality difference exists between VA-ECMO and ECPELLA platforms in patients with AMI complicated by CA and CS.

3.
Clin J Pain ; 40(7): 447-457, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561898

RESUMO

OBJECTIVES: The quality of postoperative analgesia in total knee arthroplasty is crucial for patient recovery, rehabilitation, and hospital stay duration. In line with the above, а single-shot adductor canal block has been considered as an improved method over continuous femoral nerve block. However, continuous adductor canal block and single-shot femoral nerve block have been not adequately addressed in the discussion. This study aimed to compare the effectiveness of various types of adductor and femoral nerve blocks on clinically relevant outcomes in patients following total knee arthroplasty. METHODS: A systematic review and network meta-analysis were conducted following "PRISMA-NMA" and Cochrane Handbook guidelines. The eligibility criteria included randomized trials and, where these were lacking for a comparison, nonrandomized studies involving adults undergoing primary total knee arthroplasty, comparing single-shot adductor canal block, continuous adductor canal block, single-shot femoral nerve block, and continuous femoral nerve block. RESULTS: A total of 36 studies involving 3308 patients were included. Single-shot adductor canal block showed higher pain scores and opioid consumption but better functional recovery at 24 h compared with continuous femoral nerve block. However, this trend vanishes by the 48 h assessment postsurgery. Continuous adductor canal block required higher opioid consumption but better functional recovery and shorter hospital stay compared with continuous femoral nerve block. Single-shot adductor canal block showed higher pain scores but comparable opioid consumption and functional recovery to continuous adductor canal block. DISCUSSION: The shift from continuous femoral nerve block to single-shot adductor canal block as the preferred method for pain relief after total knee arthroplasty may be premature. While the latter improves mobility, it falls short in pain control and does not shorten hospital stays. Continuous adductor canal block shows promise but is currently underappreciated, and single-shot femoral nerve block is often overshadowed by other techniques in regional anesthesia. Further high-quality, multicenter randomized controlled trials are needed to validate these findings.


Assuntos
Artroplastia do Joelho , Nervo Femoral , Bloqueio Nervoso , Metanálise em Rede , Dor Pós-Operatória , Humanos , Bloqueio Nervoso/métodos , Dor Pós-Operatória/terapia
4.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535689

RESUMO

We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe2O4 structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and "green" way to prepare CoFe2O4 nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites.

5.
Comput Methods Biomech Biomed Engin ; 27(5): 620-631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37068039

RESUMO

Slow axonal transport (SAT) moves multiple proteins from the soma, where they are synthesized, to the axon terminal. Due to the great lengths of axons, SAT almost exclusively relies on active transport, which is driven by molecular motors. The puzzling feature of slow axonal transport is its bidirectionality. Although the net direction of SAT is anterograde, from the soma to the terminal, experiments show that it also contains a retrograde component. One of the proteins transported by SAT is the microtubule-associated protein tau. To better understand why the retrograde component in tau transport is needed, we used the perturbation technique to analyze how the full tau SAT model can be simplified for the specific case when retrograde motor-driven transport and diffusion-driven transport of tau are negligible and tau is driven only by anterograde (kinesin) motors. The solution of the simplified equations shows that without retrograde transport the tau concentration along the axon length stays almost uniform (decreases very slightly), which is inconsistent with the experimenal tau concentration at the outlet boundary (at the axon tip). Thus kinesin-driven transport alone is not enough to explain the empirically observed distribution of tau, and the retrograde motor-driven component in SAT is needed.


Assuntos
Transporte Axonal , Proteínas tau , Proteínas tau/metabolismo , Cinesinas/metabolismo , Axônios/metabolismo , Neurônios , Dineínas/metabolismo
6.
Int J Numer Method Biomed Eng ; 39(12): e3770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688421

RESUMO

Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Neurônios/metabolismo , Mitocôndrias/metabolismo , Transporte Axonal/fisiologia
7.
Mol Inform ; 42(12): e202300113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37710142

RESUMO

Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).


Assuntos
Aprendizado Profundo , RNA , Humanos , RNA/química , RNA/genética , Conformação de Ácido Nucleico , Análise de Sequência de RNA/métodos , Algoritmos
8.
Sci Total Environ ; 904: 166310, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586521

RESUMO

Under the influence of anthropogenic climate change, hazardous climate and weather events are increasing in frequency and severity, with wide-ranging impacts across ecosystems and landscapes, especially fragile and dynamic coastal zones. The presented multi-model chain approach combines ocean hydrodynamics, wave fields, and shoreline extraction models to build a Bayesian Network-based coastal risk assessment model for the future analysis of shoreline evolution and seawater quality (i.e., suspended particulate matter, diffuse attenuation of light). In particular, the model was designed around a baseline scenario exploiting historical shoreline and oceanographic data within the 2015-2017 timeframe. Shoreline erosion and water quality changes along the coastal area of the Metropolitan city of Venice were evaluated for 2021-2050, under the RCP8.5 future scenario. The results showed a destabilizing trend in both shoreline evolution and seawater quality under the selected climate change scenario. Specifically, after a stable period (2021-2030), the shoreline will be affected by periods of erosion (2031-2040) and then accretion (2041-2050), with a simultaneous decrease in seawater quality in terms of higher turbidity. The decadal analysis and sensitivity evaluation of the input variables demonstrates a strong influence of oceanographic variables on the assessed endpoints, highlighting how the factors are strongly connected. The integration of regional and global climate models with Machine Learning and satellite imagery within the proposed multi-model chain represents an innovative update on state-of-the-art techniques. The validated outputs represent a good promise for better understanding the varying impacts due to future climate change conditions (e.g., wind, wave, tide, and sea-level). Moreover, the flexibility of the approach allows for the quick integration of climate and multi-risk data as it becomes available, and would represent a useful tool for forward-looking coastal risk management for decision-makers.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37424316

RESUMO

Mitochondrial aging has been proposed to be involved in a variety of neurodegenerative disorders, such as Parkinson's disease. Here, we explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study examined mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We investigated how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. Additionally, we studied whether mitochondrial concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch versus the lower branch. Furthermore, we explored whether the distributions of mitochondrial mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is unevenly split at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on the mitochondrial age.

10.
J Pers Med ; 13(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373966

RESUMO

Chronic back pain (CBP) is a complex heritable trait and a major cause of disability worldwide. We developed and validated a genome-wide polygenic risk score (PRS) for CBP using a large-scale GWAS based on UK Biobank participants of European ancestry (N = 265,000). The PRS showed poor overall predictive ability (AUC = 0.56 and OR = 1.24 per SD, 95% CI: 1.22-1.26), but individuals from the 99th percentile of PRS distribution had a nearly two-fold increased risk of CBP (OR = 1.82, 95% CI: 1.60-2.06). We validated the PRS on an independent TwinsUK sample, obtaining a similar magnitude of effect. The PRS was significantly associated with various ICD-10 and OPCS-4 diagnostic codes, including chronic ischemic heart disease (OR = 1.1, p-value = 4.8 × 10-15), obesity, metabolism-related traits, spine disorders, disc degeneration, and arthritis-related disorders. PRS and environment interaction analysis with twelve known CBP risk factors revealed no significant results, suggesting that the magnitude of G × E interactions with studied factors is small. The limited predictive ability of the PRS that we developed is likely explained by the complexity, heterogeneity, and polygenicity of CBP, for which sample sizes of a few hundred thousand are insufficient to estimate small genetic effects robustly.

11.
Spine J ; 23(8): 1108-1114, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37080360

RESUMO

BACKGROUND CONTEXT: Chronic back pain (CBP) is a common debilitating condition with substantial societal impact. While understanding genotype-by-environment (GxE) interactions may be crucial to achieving the goals of personalized medicine, there are few large-scale studies investigating this topic for CBP. None of them systematically explore multiple CBP risk factors. PURPOSE: To estimate the extent to which genetic effects on CBP are modified by known demographic and clinical risk factors. RESEARCH DESIGN: Case-control study, genome-wide GxE interaction study. PATIENT SAMPLE: Data on up to 331,610 unrelated participants (57,881 CBP cases and 273,729 controls) from the UK Biobank cohort were used. UK Biobank is a prospective cohort with collected deep genetic and phenotypic data on approximately 500,000 individuals across the UK. OUTCOME MEASURES: Self-reported chronic back pain. METHODS: We applied a whole-genome approach to estimate the proportion of phenotypic variance explained by interactions between genotype and 12 known risk factors. We also analyzed if effects of common single-nucleotide polymorphisms on CBP are changed in presence of known risk factors. RESULTS: The results indicate a modest, if any, modification of genetic effects by examined risk factors in CBP. Our estimates suggest that detecting such weak effects would require a sample size of millions of individuals. CONCLUSIONS: The GxE interactions with examined common risk factors for CBP are either weak or absent. Interactions of such magnitude are unlikely to have the potential to inform and influence treatment strategies. Risk estimation models may use common genetic variation and the considered risk factors as independent predictors, without accounting for GxE.


Assuntos
Dor nas Costas , Interação Gene-Ambiente , Humanos , Estudos de Casos e Controles , Estudos Prospectivos , Dor nas Costas/epidemiologia , Dor nas Costas/genética , Genótipo
12.
Opt Lett ; 48(5): 1292-1295, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857271

RESUMO

We have developed a laser system with a combination of record-breaking parameters for rod ytterbium-doped yttrium aluminum garnet (Yb:YAG) lasers with pulse energy 20 mJ, average power 30 W, and beam quality М2 < 1.35. This record was achieved thanks to the Yb:YAG diverging beam amplifier (DBA) geometry, which allows combining efficient amplification with high average power, good beam quality, and high-energy pulse extraction.

13.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36865162

RESUMO

We explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study looked at mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We examined how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. We also studied whether mitochondria concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch and what proportion of flux enters the lower branch. Additionally, we explored whether the distributions of mitochondria mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is split unevenly at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on mitochondria age. Mitochondria aging is the focus of this study as recent research suggests it may be involved in neurodegenerative disorders, such as Parkinson's disease.

14.
Int J Numer Method Biomed Eng ; 39(5): e3696, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872253

RESUMO

Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.


Assuntos
Axônios , Terminações Pré-Sinápticas , Terminações Pré-Sinápticas/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
15.
J Biomech Eng ; 145(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795013

RESUMO

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.


Assuntos
Transporte Axonal , Dineínas , Dineínas/genética , Transporte Axonal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Axônios/metabolismo , Microtúbulos/metabolismo
16.
Comput Methods Biomech Biomed Engin ; 26(13): 1582-1594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36226813

RESUMO

We describe a compartmental model of mitochondrial transport in axons, which we apply to compute mitochondrial age at different distances from the soma. The model predicts that at the tip of an axon that has a length of 1 cm, the average mitochondrial age is approximately 22 h. The mitochondria are youngest closest to the soma and their age scales approximately linearly with distance from the soma. To the best of the authors' knowledge, this is the first attempt to predict the spatial distribution of mitochondrial age within an axon. A sensitivity study of the mean age of mitochondria to various model parameters is also presented.


Assuntos
Transporte Axonal , Axônios , Distribuição por Idade , Axônios/metabolismo , Neurônios , Mitocôndrias/metabolismo
17.
Appl Opt ; 61(17): 5299-5303, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256214

RESUMO

The effect of amplified spontaneous emission in Yb:YAG thin-rod active elements under end diode pumping was studied numerically and experimentally with allowance for its waveguide propagation. It was shown that the waveguide propagation increases the effect significantly and notably influences gain and stored energy in this geometry. The influence of active element parameters and boundary conditions is analyzed.

18.
Int J Numer Method Biomed Eng ; 38(11): e3648, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125402

RESUMO

We report a computational study of mitochondria transport in a branched axon with two branches of different sizes. For comparison, we also investigate mitochondria transport in an axon with symmetric branches and in a straight (unbranched) axon. The interest in understanding mitochondria transport in branched axons is motivated by the large size of arbors of dopaminergic neurons, which die in Parkinson's disease. Since the failure of energy supply of multiple demand sites located in various axonal branches may be a possible reason for the death of these neurons, we were interested in investigating how branching affects mitochondria transport. Besides investigating mitochondria fluxes between the demand sites and mitochondria concentrations, we also studied how the mean age of mitochondria and mitochondria age densities depend on the distance from the soma. We established that if the axon splits into two branches of unequal length, the mean ages of mitochondria and age density distributions in the demand sites are affected by how the mitochondria flux splits at the branching junction (what portion of mitochondria enter the shorter branch and what portion enter the longer branch). However, if the axon splits into two branches of equal length, the mean ages and age densities of mitochondria are independent of how the mitochondria flux splits at the branching junction. This even holds for the case when all mitochondria enter one branch, which is equivalent to a straight axon. Because the mitochondrial membrane potential (which many researchers view as a proxy for mitochondrial health) decreases with mitochondria age, the independence of mitochondria age on whether the axon is symmetrically branched or straight (providing the two axons are of the same length), and on how the mitochondria flux splits at the branching junction, may explain how dopaminergic neurons can sustain very large arbors and still maintain mitochondrial health across branch extremities.


Assuntos
Axônios , Neurônios , Axônios/fisiologia , Mitocôndrias
19.
Cell Rep Methods ; 2(7): 100245, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880018

RESUMO

We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.


Assuntos
Optogenética , Transdução de Sinais , Optogenética/métodos , Membrana Celular/metabolismo , Membranas , Microscopia Confocal/métodos
20.
Math Med Biol ; 39(3): 299-312, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656792

RESUMO

This paper reports a minimal model simulating the growth of a Lewy body (LB). To the best of our knowledge, this is the first model simulating LB growth. The LB is assumed to consist of a central spherical core, which is composed of membrane fragments and various dysfunctional intracellular organelles, and a halo, which is composed of alpha-synuclein (α-syn) fibrils. Membrane fragments and α-syn monomers are assumed to be produced in the soma at constant rates. The growth of the core and the halo are simulated by the Finke-Watzky model. Analytical (closed-form) solutions describing the growth of the core and the halo are obtained. A sensitivity analysis in terms of model parameters is performed.


Assuntos
Simulação por Computador , Corpos de Lewy , Modelos Biológicos , Doença de Parkinson , Humanos , Corpos de Lewy/química , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...