Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(6): 3037-3056, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342703

RESUMO

Currently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents. However, sometimes straightforward C-OCE-based differentiation is insufficient because of the similar stiffness of certain tissue components. We present a new automated approach to the rapid morphological assessment of human breast cancer based on the combined usage of C-OCE and speckle-contrast (SC) analysis. Using the SC analysis of structural OCT images, the threshold value of the SC coefficient was established to enable the separation of areas of adipose cells from necrotic cancer cells, even if they are highly similar in elastic properties. Consequently, the boundaries of the tumor bed can be reliably identified. The joint analysis of structural and elastographic images enables automated morphological segmentation based on the characteristic ranges of stiffness (Young's modulus) and SC coefficient established for four morphological structures of breast-cancer samples from patients post neoadjuvant chemotherapy (residual cancer cells, cancer stroma, necrotic cancer cells, and mammary adipose cells). This enabled precise automated detection of residual cancer-cell zones within the tumor bed for grading cancer response to chemotherapy. The results of C-OCE/SC morphometry highly correlated with the histology-based results (r =0.96-0.98). The combined C-OCE/SC approach has the potential to be used intraoperatively for achieving clean resection margins in breast cancer surgery and for performing targeted histological analysis of samples, including the evaluation of the efficacy of cancer chemotherapy.

2.
Front Oncol ; 13: 1121838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064146

RESUMO

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer - low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.

3.
Biomed Opt Express ; 13(5): 2859-2881, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35774307

RESUMO

The aims of this study are (i) to compare ultrasound strain elastography (US-SE) and compression optical coherence elastography (C-OCE) in characterization of elastically linear phantoms, (ii) to evaluate factors that can cause discrepancy between the results of the two elastographic techniques in application to real tissues, and (iii) to compare the results of US-SE and C-OCE in the differentiation of benign and malignant breast lesions. On 22 patients, we first used standard US-SE for in vivo assessment of breast cancer before and then after the lesion excision C-OCE was applied for intraoperative visualization of margins of the tumors and assessment of their type/grade using fresh lumpectomy specimens. For verification, the tumor grades and subtypes were determined histologically. We show that in comparison to US-SE, quantitative C-OCE has novel capabilities due to its ability to locally control stress applied to the tissue and obtain local stress-strain curves. For US-SE, we demonstrate examples of malignant tumors that were erroneously classified as benign and vice versa. For C-OCE, all lesions are correctly classified in agreement with the histology. The revealed discrepancies between the strain ratio given by US-SE and ratio of tangent Young's moduli obtained for the same samples by C-OCE are explained. Overall, C-OCE enables significantly improved specificity in breast lesion differentiation and ability to precisely visualize margins of malignant tumors compared. Such results confirm high potential of C-OCE as a high-speed and accurate method for intraoperative assessment of breast tumors and detection of their margins.

4.
J Biophotonics ; 15(9): e202200036, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652856

RESUMO

In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses. Each of the degrees has a characteristic set of quantitatively expressed features. We focus on the identification and description of early, initial changes of the dermis as the least specific. The results obtained by us and the proposed classification of the degrees of the disease can be used to objectify the dynamics of tissue changes during treatment.


Assuntos
Líquen Escleroso Vulvar , Colágeno Tipo I , Tecido Conjuntivo , Feminino , Humanos , Microscopia , Projetos Piloto , Líquen Escleroso Vulvar/diagnóstico por imagem
5.
Biomed Opt Express ; 13(4): 2393-2413, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519266

RESUMO

A pilot post-mortem study identifies a strong correlation between the attenuation coefficient estimated from the OCT data and some morphological features of the sample, namely the number of nuclei in the field of view of the histological image and the fiber structural parameter introduced in the study to quantify the difference in the myelinated fibers arrangements. The morphological features were identified from the histopathological images of the sample taken from the same locations as the OCT images and stained with the immunohistochemical (IHC) staining specific to the myelin. It was shown that the linear regression of the IHC quantitative characteristics allows adequate prediction of the attenuation coefficient of the sample. This discovery opens the opportunity for the usage of the OCT as a neuronavigation tool.

6.
Materials (Basel) ; 15(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591642

RESUMO

Soft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young's modulus on the applied stress. We showed that compression optical coherence elastography (C-OCE) is a promising tool enabling the evaluation of nonlinear properties in addition to the conventionally discussed Young's modulus in order to improve diagnostic accuracy of elastographic examination of tumorous tissues. The aim of this study was to reveal and quantify variations in stiffness for various breast tissue components depending on the applied pressure. We discussed nonlinear elastic properties of different breast cancer samples excised from 50 patients during breast-conserving surgery. Significant differences were found among various subtypes of tumorous and nontumorous breast tissues in terms of the initial Young's modulus (estimated for stress < 1 kPa) and the nonlinearity parameter determining the rate of stiffness increase with increasing stress. However, Young's modulus alone or the nonlinearity parameter alone may be insufficient to differentiate some malignant breast tissue subtypes from benign. For instance, benign fibrous stroma and fibrous stroma with isolated individual cancer cells or small agglomerates of cancer cells do not yet exhibit significant difference in the Young's modulus. Nevertheless, they can be clearly singled out by their nonlinearity parameter, which is the main novelty of the proposed OCE-based discrimination of various breast tissue subtypes. This ability of OCE is very important for finding a clean resection boundary. Overall, morphological segmentation of OCE images accounting for both linear and nonlinear elastic parameters strongly enhances the correspondence with the histological slices and radically improves the diagnostic possibilities of C-OCE for a reliable clinical outcome.

7.
J Biophotonics ; 14(5): e202000471, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522719

RESUMO

In this study multiphoton tomography, based on second harmonic generation (SHG), and two-photon-excited fluorescence (TPEF) was used to visualize both the extracellular matrix and tumor cells in different morphological and molecular subtypes of human breast cancer. It was shown, that quantified assessment of the SHG based imaging data has great potential to reveal differences of collagen quantity, organization and uniformity in both low- and highly- aggressive invasive breast cancers. The values of quantity and uniformity of the collagen fibers distribution were significantly higher in low-aggressive breast cancer compared to the highly-aggressive subtypes, while the value representing collagen organization was lower in the former type. Additionally, it was shown, that TPEF detection of elastin fibers and amyloid protein may be used as a biomarker of detection the low-aggressive breast cancer subtype. Thus, TPEF/SHG imaging offers the possibility of becoming a useful tool for the rapid diagnosis of various subtypes of breast cancer during biopsy as well as for the intraoperative determinination of tumor-positive resection margins.


Assuntos
Neoplasias da Mama , Microscopia de Fluorescência por Excitação Multifotônica , Neoplasias da Mama/diagnóstico por imagem , Diferenciação Celular , Colágeno , Feminino , Humanos , Tomografia Computadorizada por Raios X
8.
Diagnostics (Basel) ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255263

RESUMO

The possibility to assess molecular-biological and morphological features of particular breast cancer types can improve the precision of resection margin detection and enable accurate determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable differentiation of breast-cancer subtypes and evaluation of resection margin, without performing conventional histological procedures, here we apply cross-polarization optical coherence tomography (CP-OCT) and compare it with a novel variant of compressional optical coherence elastography (C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used 70 excised breast cancer specimens with different morphological structure and molecular status (Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer). Our first aim was to formulate convenient criteria of visual assessment of CP-OCT and C-OCE images intended (i) to differentiate tumorous and non-tumorous tissues and (ii) to enable more precise differentiation among different malignant states. We identified such criteria based on the presence of heterogeneities and characteristics of signal attenuation in CP-OCT images, as well as the presence of inclusions/mosaic structures combined with visually feasible assessment of several stiffness grades in C-OCE images. Secondly, we performed a blinded reader study of the Ac of C-OCE versus CP-OCT, for delineation of tumorous versus non-tumorous tissues followed by identification of breast cancer subtypes. For tumor detection, C-OCE showed higher specificity than CP-OCT (97.5% versus 93.3%) and higher Ac (96.0 versus 92.4%). For the first time, the Ac of C-OCE and CP-OCT were evaluated for differentiation between non-invasive and invasive breast cancer (90.4% and 82.5%, respectively). Furthermore, for invasive cancers, the difference between invasive but low-aggressive and highly-aggressive subtypes can be detected. For differentiation between non-tumorous tissue and low-aggressive breast-cancer subtypes, Ac was 95.7% for C-OCE and 88.1% for CP-OCT. For differentiation between non-tumorous tissue and highly-aggressive breast cancers, Ac was found to be 98.3% for C-OCE and 97.2% for CP-OCT. In all cases C-OCE showed better diagnostic parameters independently of the tumor type. These findings confirm the high potential of OCT-based examinations for rapid and accurate diagnostics during breast conservation surgery.

9.
Sci Rep ; 10(1): 11781, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678175

RESUMO

We present a non-invasive (albeit contact) method based on Optical Coherence Elastography (OCE) enabling the in vivo segmentation of morphological tissue constituents, in particular, monitoring of morphological alterations during both tumor development and its response to therapies. The method uses compressional OCE to reconstruct tissue stiffness map as the first step. Then the OCE-image is divided into regions, for which the Young's modulus (stiffness) falls in specific ranges corresponding to the morphological constituents to be discriminated. These stiffness ranges (characteristic "stiffness spectra") are initially determined by careful comparison of the "gold-standard" histological data and the OCE-based stiffness map for the corresponding tissue regions. After such pre-calibration, the results of morphological segmentation of OCE-images demonstrate a striking similarity with the histological results in terms of percentage of the segmented zones. To validate the sensitivity of the OCE-method and demonstrate its high correlation with conventional histological segmentation we present results obtained in vivo on a murine model of breast cancer in comparative experimental study of the efficacy of two antitumor chemotherapeutic drugs with different mechanisms of action. The new technique allowed in vivo monitoring and quantitative segmentation of (1) viable, (2) dystrophic, (3) necrotic tumor cells and (4) edema zones very similar to morphological segmentation of histological images. Numerous applications in other experimental/clinical areas requiring rapid, nearly real-time, quantitative assessment of tissue structure can be foreseen.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia de Coerência Óptica , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/tratamento farmacológico , Tomografia de Coerência Óptica/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomed Opt Express ; 11(3): 1365-1382, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206416

RESUMO

Emerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and in vivo utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury. Despite different mechanisms of anti-angiogenic action for ChT and PDT, in both cases OCA demonstrated high sensitivity to blood perfusion cessation. The new method of OCE-based morphological segmentation revealed very similar histological structure alterations. The OCE results showed high correlation with conventional histology in evaluating percentages of necrotic and viable tumor zones. Such possibilities make OCE an attractive tool enabling previously inaccessible in vivo monitoring of individual tumor response to therapies without taking multiple biopsies.

11.
Front Oncol ; 9: 201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001471

RESUMO

This paper considers valuable visual assessment criteria for distinguishing between tumorous and non-tumorous tissues, intraoperatively, using cross-polarization OCT (CP OCT)-OCT with a functional extension, that enables detection of the polarization properties of the tissues in addition to their conventional light scattering. Materials and Methods: The study was performed on 176 ex vivo human specimens obtained from 30 glioma patients. To measure the degree to which the typical parameters of CP OCT images can be matched to the actual histology, 100 images of tumors and white matter were selected for visual analysis to be undertaken by three "single-blinded" investigators. An evaluation of the inter-rater reliability between the investigators was performed. Application of the identified visual CP OCT criteria for intraoperative use was performed during brain tumor resection in 17 patients. Results: The CP OCT image parameters that can typically be used for visual assessment were separated: (1) signal intensity; (2) homogeneity of intensity; (3) attenuation rate; (4) uniformity of attenuation. The degree of match between the CP OCT images and the histology of the specimens was significant for the parameters "signal intensity" in both polarizations, and "homogeneity of intensity" as well as the "uniformity of attenuation" in co-polarization. A test based on the identified criteria showed a diagnostic accuracy of 87-88%. Intraoperative in vivo CP OCT images of white matter and tumors have similar signals to ex vivo ones, whereas the cortex in vivo is characterized by indicative vertical striations arising from the "shadows" of the blood vessels; these are not seen in ex vivo images or in the case of tumor invasion. Conclusion: Visual assessment of CP OCT images enables tumorous and non-tumorous tissues to be distinguished. The most powerful aspect of CP OCT images that can be used as a criterion for differentiation between tumorous tissue and white matter is the signal intensity. In distinguishing white matter from tumors the diagnostic accuracy using the identified visual CP OCT criteria was 87-88%. As the CP OCT data is easily associated with intraoperative neurophysiological and neuronavigation findings this can provide valuable complementary information for the neurosurgeon tumor resection.

12.
Sci Rep ; 9(1): 2024, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765763

RESUMO

Optical coherence tomography (OCT) is a promising method for detecting cancer margins during tumor resection. This study focused on differentiating tumorous from nontumorous tissues in human brain tissues using cross-polarization OCT (CP OCT). The study was performed on fresh ex vivo human brain tissues from 30 patients with high- and low-grade gliomas. Different tissue types that neurosurgeons should clearly distinguish during surgery, such as the cortex, white matter, necrosis and tumorous tissue, were separately analyzed. Based on volumetric CP OCT data, tumorous and normal brain tissue were differentiated using two optical coefficients - attenuation and forward cross-scattering. Compared with white matter, tumorous tissue without necrotic areas had significantly lower optical attenuation and forward cross-scattering values. The presence of particular morphological patterns, such as necrosis and injured myelinated fibers, can lead to dramatic changes in coefficient values and create some difficulties in differentiating between tissues. Color-coded CP OCT maps based on optical coefficients provided a visual assessment of the tissue. This study demonstrated the high translational potential of CP OCT in differentiating tumorous tissue from white matter. The clinical use of CP OCT during surgery in patients with gliomas could increase the extent of tumor resection and improve overall and progression-free survival.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Encéfalo/diagnóstico por imagem , Tomografia de Coerência Óptica , Encéfalo/citologia , Encéfalo/patologia , Feminino , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...