Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174939

RESUMO

Phosphorus (P) is the second most important nutrient after nitrogen (N) and can greatly diminish plant productivity if P supply is not adequate. Plants respond to soil P availability by adjusting root biomass to maintain uptake and productivity due to P use. In spite of our vast knowledge on P effects on plant growth, how to functionally model enhanced root biomass allocation in low P environments is not fully explored. We develop a dynamic plant model based on the principle of optimal carbon (C) and P allocation to investigate growth and functional response to contrasting levels of soil P availability. By describing plant growth as a balance of growth and respiration processes, we optimize C and P allocation in order to maximize leaf productivity and drive plant response. We compare our model to a field trial and a set of hydroponic experiments which describe plant response at varying P availabilities. The model is able to reproduce long-term plant functional response to different P levels like change in root-shoot ratio (RSR), total biomass and organ P concentration. But it is not capable of fully describing the time evolution of organ P uptake and cycling within the plant. Most notable is the underestimation of organ P uptake during the vegetative growth stage which is due to the model's leaf productivity formalism. In spite of the model's parsimonious nature, which optimizes for and predicts whole plant response through leaf productivity alone, the optimal growth hypothesis can provide a reasonable framework for modelling plant response to environmental change that can be used in more physically driven vegetation models.

2.
Environ Pollut ; 244: 705-714, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384076

RESUMO

A severe air quality degradation event occurred in the Santiago Metropolitan Area (SMA), Chile, in June 2014. Meteorological and air quality measurements from 11 stations in the area as well as numerical simulations using the Weather and Research Forecasting (WRF) model were used to explain the main reasons for the occurrence of elevated particulate matter (PM) concentrations. The conditions were characterized with formation of a coastal low in central Chile between the southeastern anticyclone and a high-pressure system over Argentina. At a local scale, these conditions generated a depression at the base of the inversion layer, an increase in the vertical thermal stability, lower humidity and low-wind conditions, which were conducive to a decrease in pollutant dispersion and insufficient ventilation of the polluted air. Measurements and simulations using the WRF model revealed a vertical structure of the boundary layer during these stagnant conditions and provided a basis for a trajectory analysis. The back-trajectory calculation showed that the transport of air parcels was contained in the valley during the highest concentrations. The analysis also enabled the definition of the threshold values of a simple indicator of air pollution (ventilation coefficient, VC), which confirmed the evolution of the episode and divided the observed daily concentrations into two groups, with one including values above the limits prescribed by the national air quality standards (NAQS) and the other including values below these limits. For the SMA, the daily PM concentrations above the NASQ limits were associated with an overall mean threshold value of VC below 500 m2 s-1 (for PM2.5) and 300 m2 s-1 (for PM10). To apply the VC analysis to other pollutants and different geographic locations, different threshold values should be evaluated.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Tempo (Meteorologia) , Chile , Umidade , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA