Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet World ; 13(11): 2484-2492, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33363345

RESUMO

BACKGROUND AND AIM: Progressive antibiotic resistance has become the primary threat to public health. The search for alternative substances with similar effects is now a global challenge for poultry farming. The aim of this study was to investigate the action of the probiotic Bacillus cereus (BC) and coumarin (CO) on broiler productivity, biochemical indicators of blood, and muscular and liver tissues. MATERIALS AND METHODS: The trial of this study included Arbor Acres cross broiler chickens that were grown up to the age of 42 days. The experiment was conducted on 200 broiler chickens divided into four experimental groups of 50 individuals each: The control group received ration without additives (main ration [MR]), the first experimental group received MR+BC, the second received MR+CO, and the third received -MR+BC+CO. A biochemical and hematological analyzer was used to estimate elemental concentrations using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. RESULTS: Inclusion of CO and CO+BC in the diet improved growth rates and reduced feed consumption (FC) per kg of live weight gain. Decreased white blood cell count, increased creatinine and triglycerides (CO), changes in aminotransferase and transpeptidase activity, and increases in chemical elements in the liver and pectoral muscles (BC+CO) were observed. The inclusion of BC+CO in the diet contributed to increases in a greater number of chemical elements in the liver (calcium [Ca], K, magnesium, Mn, Si, and Zn) and the pectoral muscles (Ca, Na, Co, Cu, Fe, Mn, Ni, and Zn). CONCLUSION: The inclusion of CO and CO+BC in the diet improves growth rates and reduces FC in broilers against a background of the absence of mortality during the experiment.

2.
Environ Sci Pollut Res Int ; 27(14): 17393-17400, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157530

RESUMO

The role of chemical elements in an organism is versatile and multifunctional. However, you should pay attention to the reaction of the organism on the introduction of chemical elements with different biological roles, which is predetermined by the physiological role of organs and body systems. These include the red bone marrow, which primarily responds to endogenous and exogenous factors by its functional significance. Analyzing the myelogram of birds after the various ways of copper NP introduction into the body and the different dosages, we found that, by the end of the experiment, the total numbers of bone marrow cells in all groups were lower than the initial values: in the second group-12.54% lower (p < 0.05), in third-26.32% lower (p < 0.001), for the fourth-14.75% lower (p < 0.05), with exception for the first experimental group where this index was 45.51% higher (р < 0.001). We revealed the following changes in the peripheral blood: the hemoglobin content by the end of the experiment was significantly higher than the initial values: by 18.63% for the first group (p < 0.01); 28.61% higher in the third group (p < 0.001); and 15.76% higher for the fourth (p < 0.01), except the animals of the second group (3.23% lower). The concentration of erythrocytes in all groups was higher than that of the background: by 24.56% (p < 0.001), by 3.37%, by 26.18% (p < 0.001), and by 14.85% (p < 0.01), respectively; the leukocyte concentration in the first group was 39.63% higher (p < 0.001), it remained at the level of the initial values in the other groups. The erythrocyte sedimentation rate in all groups increased by 2.4, 4.0, 2.01, and 1.86 times (p < 0.001), respectively. We revealed that the introduction of copper into an organism in the form of nanopowder both with feed and intramuscularly significantly caused an increase of the content of such elements as arsenic, copper, and silicon and a decrease of calcium, potassium, magnesium, phosphorus, boron, cobalt, iodine, lithium, sodium, zinc, tin, and strontium in the marrowy aspirate. Moreover, compared with the first group (p < 0.01), increasing doses of nanopowders caused a significant rise in the arsenic and tin concentrations and a decline of iodine and strontium. We found that copper nanoparticles ambiguously affect the bone marrow hemopoiesis of poultry; increasing the dose and changing the type of introduction activating the bone marrow hematopoietic function, in particular, granulocyto-, megakaryocyto-, and erythropoiesis.


Assuntos
Galinhas , Cobre , Animais , Medula Óssea , Magnésio , Zinco
3.
Environ Sci Pollut Res Int ; 26(3): 2845-2850, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488250

RESUMO

The quality of feed, including its microbiological characteristics, is important for the organization of full-value feeding of animals in agriculture. So, the means of non-reagent processing of feeds, including cavitation treatment, are becoming more widespread. In our study, it was shown that the amount of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM) decreases after a 5-min treatment of the test samples (chalk, fuz, bran, and zeolite) (1.1-35 times) compared to untreated samples, while an increase in the duration of exposure is proportional to the expression of the bactericidal effect. A study of the bioluminescent response of the test strain Escherichia coli K12 TG1 under the influence of the test samples showed inhibition of bioluminescence under the action of chalk and an increase in luminescence during incubation with fusa and bran. When examining the growth rates of strains E. Coli 675 and Bifidobacterium longum B379M, it was found that water and zeolite treated with cavitation suppressed the growth of E. coli 675, while the growth of Bifidobacterium longum B379M was higher than the control values at the end of the experiment. So, cavitation processing can cause the death of microflora of feed additives, at the same time, as a result of the dissociation of a complex of organic polymers, contributing to the positive response of probiotic strains. These studies can be used in agriculture in the preparation of feed additives from waste from the processing industry.


Assuntos
Ração Animal/microbiologia , Bifidobacterium longum/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Probióticos , Ondas Ultrassônicas , Ração Animal/normas , Animais , Fibras na Dieta/análise , Água/química , Zeolitas/química
4.
Environ Sci Pollut Res Int ; 25(16): 15765-15773, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29582323

RESUMO

Copper nanoparticle Cu (d = 55 ± 15 nm) and CuO nanoparticles (d = 90 ± 10 nm) were used in the studies (OOO Platina, Russia). Using the method of pure cultures, we extracted Lactobacillus, Enterococcus, and Enterobacterium from the intestines of broilers. Additionally, strains of Bacillus subtilis 10641 and Bifidobacterium were involved in probiotic strains. The data obtained in the course of the study testify to the insignificant biotoxicity of copper nanoparticles with respect to representatives of the genera Lactobacillus (30 to 15 µg/ml) and Bifidobacterium (30 µg/ml), with the most sensitive bacteria being the genus Lactobacillus, for which a concentration of 7.5 µg/ml was subinhibitory. The second stage was the study using method of agar wells. In the course of the experiment, we obtained results confirming the data of the research by the serial dilution method. In this case, as in the first case, the data indicate the insignificant biotoxicity of copper nanoparticles in relation to representatives of the genera Lactobacillus and Bifidobacterium. We have studied the bioaccumulating ability of microorganisms of the studied metals. In all the studies carried out, as in the first series of experiments, representatives of the genera Lactobacillus and Bifidobacterium with the lowest bioaccumulative ability were the most sensitive to copper nanoparticles and were 3.1 and 8.2%, respectively. The use of nanoparticles as a component of the fodder additive in small concentrations does not adversely affect not only the probiotic strains, but also the main representatives of the normoflora (Lactobacillus, Enterococcus, and Enterobacterium) of the poultry, the positive effect of the copper nanoparticles being directly related to low level of dissociation of nanoparticles, since biologically active ions will be released much more slowly, thereby creating a prolonged effect of exposure.


Assuntos
Galinhas/microbiologia , Cobre/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Probióticos/administração & dosagem , Animais , Bacillus subtilis/efeitos dos fármacos , Bactérias/efeitos dos fármacos
5.
Environ Sci Pollut Res Int ; 25(3): 2175-2183, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29116533

RESUMO

For the purpose of safe modulation of the intestinal microflora, probiotics have been increasingly used in recent years. In the present work, the effect of the probiotic sporobacterin (Bacillus subtilis 534) (I group) and soybean-bifidum (Bifidobacterium longum) (II group) on male rats of the Wistar line was evaluated. In assessing nonspecific immunity in vitro, there was an increase in the level of baseline level in the first and second groups (by 8.3 and 12.2% more control). The influence of probiotic preparations on the intestinal normoflora was assessed using PCR. Bifidumbacterin increased the normal microflora, in particular, Escherichia coli 1.55 times, Lactobacillus 1.26 times, Enterococcus 1.3 times as much control; the level of conditionally pathogenic microflora, in particular, Proteus spp. decreased by 1.3 times in comparison with the control. Sporobacterin also contributed to an increase in the amount of E. coli (1.55 times) and Lactobacillus (0.9 times). When a culture of Bifidobacterium longum was introduced, a selective reduction in the loss of chemical elements was observed against the background of the diet used. At the end of the experiment, the content of calcium in the body tissues of animals of group II exceeded this indicator in group I by 3.9%, phosphorus by 17.6%, copper by 28.5%, and zinc by 15.2%. The totality of the results obtained by us indicates that inclusion of Bifidumbacterium longum in the diet of animals makes the use of this preparation in the correction of mineral imbalance and improves the microflora of the intestines of animals by reducing the number of representatives of opportunistic microflora against the background of an increase in the number of basic representatives of normal microbiocenosis. Also, the use of probiotic drugs as additives leads to a slight increase in the level of nonspecific immunity, which increases the natural resistance of the organism.


Assuntos
Bacillus subtilis/fisiologia , Bifidobacterium longum/fisiologia , Microbioma Gastrointestinal , Probióticos/farmacologia , Animais , Dieta , Escherichia coli/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Masculino , Minerais , Proteus/crescimento & desenvolvimento , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...