Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(1): 134-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25435082

RESUMO

Semiconductor nanowires are great candidates for building novel electronic devices. Considering the cost of fabricating such devices, substrate reuse and gold consumption are the main concerns. Here we report on implementation of high throughput gold electrodeposition for selective deposition of metal seed particles in arrays defined by lithography for nanowire synthesis. By use of this method, a reduction in gold consumption by a factor of at least 300 was achieved, as compared to conventional thermal evaporation for the same pattern. Because this method also facilitates substrate reuse, a significantly reduced cost of the final device is expected. We investigate the morphology, crystallography, and optical properties of InP and GaAs nanowires grown from electrodeposited gold seed particles and compare them with the properties of nanowires grown from seed particles defined by thermal evaporation of gold. We find that nanowire synthesis, as well as the material properties of the grown nanowires are comparable and quite independent of the gold deposition technique. On the basis of these results, electrodeposition is proposed as a key technology for large-scale fabrication of nanowire-based devices.

2.
Langmuir ; 24(23): 13509-17, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18989944

RESUMO

The interaction between cytoskeletal filaments (e.g., actin filaments) and molecular motors (e.g., myosin) is the basis for many aspects of cell motility and organization of the cell interior. In the in vitro motility assay (IVMA), cytoskeletal filaments are observed while being propelled by molecular motors adsorbed to artificial surfaces (e.g., in studies of motor function). Here we integrate ideas that cytoskeletal filaments may be used as nanoscale templates in nanopatterning with a novel approach for the production of surface gradients of biomolecules and nanoscale topographical features. The production of such gradients is challenging but of increasing interest (e.g., in cell biology). First, we show that myosin-induced actin filament sliding in the IVMA can be approximately described as persistent random motion with a diffusion coefficient (D) given by a relationship analogous to the Einstein equation (D = kT/gamma). In this relationship, the thermal energy (kT) and the drag coefficient (gamma) are substituted by a parameter related to the free-energy transduction by actomyosin and the actomyosin dissociation rate constant, respectively. We then demonstrate how the persistent random motion of actin filaments can be exploited in conceptually novel methods for the production of actin filament density gradients of predictable shapes. Because of regularly spaced binding sites (e.g., lysines and cysteines) the actin filaments act as suitable nanoscale scaffolds for other biomolecules (tested for fibronectin) or nanoparticles. This forms the basis for secondary chemical and topographical gradients with implications for cell biological studies and biosensing.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Movimento Celular/fisiologia , Proteínas Motores Moleculares/química , Subfragmentos de Miosina/química , Termodinâmica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adsorção , Animais , Difusão , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Membranas Artificiais , Proteínas Motores Moleculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Subfragmentos de Miosina/metabolismo , Tamanho da Partícula , Coelhos , Propriedades de Superfície
3.
Langmuir ; 22(17): 7286-95, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893228

RESUMO

Biological molecular motors that are constrained so that function is effectively limited to predefined nanosized tracks may be used as molecular shuttles in nanotechnological applications. For these applications and in high-throughput functional assays (e.g., drug screening), it is important that the motors propel their cytoskeletal filaments unidirectionally along the tracks with a minimal number of escape events. We here analyze the requirements for achieving this for actin filaments that are propelled by myosin II motor fragments (heavy meromyosin; HMM). First, we tested the guidance of HMM-propelled actin filaments along chemically defined borders. Here, trimethylchlorosilane (TMCS)-derivatized areas with high-quality HMM function were surrounded by SiO(2) domains where HMM did not bind actin. Guidance along the TMCS-SiO(2) border was almost 100% for filament approach angles between 0 and 20 degrees but only about 10% at approach angles near 90 degrees . A model (Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Bohringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Langmuir 2003, 19, 10967-10974) accounted for essential aspects of the data and also correctly predicted a more efficient guidance of actin filaments than previously shown for kinesin-propelled microtubules. Despite the efficient guidance at low approach angles, nanosized (<700 nm wide) TMCS tracks surrounded by SiO(2) were not effective in guiding actin filaments. Neither was there complete guidance along nanosized tracks that were surrounded by topographical barriers (walls and roof partially covering the track) unless there was also chemically based selectivity between the tracks and surroundings. In the latter case, with dually defined tracks, there was close to 100% guidance. A combined experimental and theoretical analysis, using tracks of the latter type, suggested that a track width of less than about 200-300 nm is sufficient at a high HMM surface density to achieve unidirectional sliding of actin filaments. In accord with these results, we demonstrate the long-term trapping of actin filaments on a closed-loop track (width < 250 nm). The results are discussed in relation to lab-on-a-chip applications and nanotechnology-assisted assays of actomyosin function.


Assuntos
Citoesqueleto de Actina/química , Actinas/fisiologia , Procedimentos Analíticos em Microchip , Nanotecnologia/métodos , Animais , Indicadores e Reagentes/química , Subfragmentos de Miosina/química , Nanoestruturas/química , Coelhos , Dióxido de Silício/química , Propriedades de Superfície , Compostos de Trimetilsilil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...