Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(1): 86-97, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878460

RESUMO

Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aß) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aß in its three representative forms of monomers (Aß-m), oligomers (Aß-o), and amyloid fibrils (Aß-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aß species, especially by the most toxic Aß-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aß species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aß, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Grafite/metabolismo , Pontos Quânticos/metabolismo , Peptídeos beta-Amiloides/química , Membrana Celular/química , Grafite/química , Humanos , Simulação de Dinâmica Molecular , Agregados Proteicos , Pontos Quânticos/química
2.
Lab Chip ; 21(20): 4016-4030, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34487130

RESUMO

Compartmentalized microfluidic devices are becoming increasingly popular and have proven to be valuable tools to probe neurobiological functions that are inherently difficult to study using traditional approaches. The ability of microfluidic devices to compartmentalize neurons offers considerable promise for disease modeling and drug discovery. Rodent cortical neurons/neural progenitors are commonly used in such studies but, while these cells mature rapidly, they do not possess the same receptors, ion channels and transport proteins found in human cortical neurons. Human pluripotent stem cell derived neurons offer a human phenotype, but their slow maturation offsets this phenotypic advantage, particularly over long-term culture where overgrowth and subsequent death of neurons may be a problem. In this work, we integrate the use of Matrigel as a 3D cell culture scaffold that enables high cell seeding density over a small fraction of the culture surface. This approach, in an open chamber microfluidic system, enables culture over a five-month period without the use of growth inhibitors. Matrigel was also uniquely utilized to hinder agonist diffusion across microchannels. We demonstrate the development of neuron-to-neuron communication networks by showing that electrical stimulation or the unilateral addition of agonists to one chamber resulted in activation of neurons in the adjacent chamber. Lastly, using a delayed neuron seeding strategy, we show that we can foster essentially one-way communication between separate populations of human forebrain and midbrain dopaminergic neuron containing cultures.


Assuntos
Microfluídica , Células-Tronco Pluripotentes , Diferenciação Celular , Neurônios Dopaminérgicos , Humanos , Mesencéfalo , Prosencéfalo
3.
ACS Appl Mater Interfaces ; 13(25): 29936-29948, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34143617

RESUMO

Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aß). A small peptide of considerable hydrophobicity, Aß is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aß-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aß, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aß oligomers but not by Aß monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aß amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aß monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aß oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.


Assuntos
Peptídeos beta-Amiloides , Dissulfetos/química , Fluidez de Membrana/fisiologia , Molibdênio/química , Pontos Quânticos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Actinas/química , Actinas/metabolismo , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lauratos/química , Microscopia Confocal , Simulação de Dinâmica Molecular , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...