Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(5): 2757-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902758

RESUMO

Drug-resistant pathogens are a growing problem, and novel strategies are needed to combat this threat. Among the most significant of these resistant pathogens is Mycobacterium tuberculosis, which is an unusually difficult microbial target due to its complex membrane. Here, we design peptides for specific activity against M. tuberculosis using a combination of "database filtering" bioinformatics, protein engineering, and de novo design. Several variants of these peptides are structurally characterized to validate the design process. The designed peptides exhibit potent activity (MIC values as low as 4 µM) against M. tuberculosis and also exhibit broad activity against a host of other clinically relevant pathogenic bacteria such as Gram-positive bacteria (Streptococcus) and Gram-negative bacteria (Escherichia coli). They also display excellent selectivity, with low cytotoxicity against cultured macrophages and lung epithelial cells. These first-generation antimicrobial peptides serve as a platform for the design of antibiotics and for investigating structure-activity relationships in the context of the M. tuberculosis membrane. The antimicrobial peptide design strategy is expected to be generalizable for any pathogen for which an activity database can be created.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biologia Computacional/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
2.
J Am Chem Soc ; 136(36): 12648-57, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25119124

RESUMO

Crystallization is often facilitated by modifiers that interact with specific crystal surfaces and mediate the anisotropic rate of growth. Natural and synthetic modifiers tend to function as growth inhibitors that hinder solute attachment and impede the advancement of layers on crystal surfaces. There are fewer examples of modifiers that operate as growth promoters, whereby modifier-crystal interactions accelerate the kinetic rate of crystallization. Here, we examine two proteins, lysozyme and lactoferrin, which are observed in the organic matrix of three types of pathological stones: renal, prostatic, and pancreatic stones. This work focuses on the role of these proteins in the crystallization of calcium oxalate monohydrate (COM), the most prominent constituent of human kidney stones. Using a combination of experimental techniques, we show that these proteins, which are rich in l-arginine and l-lysine amino acids, promote COM growth. The synthesis and testing of peptides derived from contiguous segments of lysozyme's primary amino acid sequence revealed subdomains within the protein that operate either as an inhibitor or promoter of COM growth, with the latter exhibiting efficacies that nearly match that of the protein. We observed that cationic proteins promote COM growth over a wide range of modifier concentration, which differs from calcification promoters in the literature that exhibit dual roles as promoters and inhibitors at low and high concentration, respectively. This seems to suggest a unique mechanism of action for lysozyme and lactoferrin. Possible explanations for their effects on COM growth and crystal habit are proposed on the basis of classical colloidal theories and the physicochemical properties of peptide subdomains, including the number and spatial location of charged or hydrogen-bonding moieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...