Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 55(1): 15-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25408419

RESUMO

The PTTG1-binding factor (PBF) is a transforming gene capable of eliciting tumor formation in xenograft models. However, the precise role of PBF in tumorigenesis and its prognostic value as a cancer biomarker remain largely uncharacterised, particularly in malignancies outside the thyroid. Here, we provide the first evidence that PBF represents a promising prognostic marker in colorectal cancer. Examination of a total of 39 patients demonstrated higher PBF expression at both the mRNA (P = 0.009) and protein (P < 0.0001) level in colorectal tumors compared to matched normal tissue. Critically, PBF was most abundant in colorectal tumors associated with Extramural Vascular Invasion (EMVI), increased genetic instability (GI) and somatic TP53 mutations, all features linked with recurrence and poorer patient survival. We further demonstrate by glutathione-S-transferase (GST) pull-down and coimmunoprecipitation that PBF binds to the tumor suppressor protein p53, as well as to p53 mutants (Δ126-132, M133K, V197E, G245D, I255F and R273C) identified in the colorectal tumors. Importantly, overexpression of PBF in colorectal HCT116 cells interfered with the transcriptional activity of p53-responsive genes such as mdm2, p21 and sfn. Diminished p53 stability (> 90%; P < 0.01) was also evident with a concurrent increase in ubiquitinated p53. Human colorectal tumors with wild-type TP53 and high PBF expression also had low p53 protein levels (P < 0.05), further emphasizing a putative interaction between these genes in vivo. Overall, these results demonstrate an emerging role for PBF in colorectal tumorigenesis through regulating p53 activity, with implications for PBF as a prognostic indicator for invasive tumors.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Membrana/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Invasividade Neoplásica , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proto-Oncogene Mas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaio Tumoral de Célula-Tronco , Ubiquitinação
2.
Endocrinology ; 154(11): 4408-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23867215

RESUMO

Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg(-/-) knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.


Assuntos
Securina/metabolismo , Glândula Tireoide/citologia , Animais , Comunicação Autócrina , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Proliferação de Células , Cricetinae , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Camundongos , Camundongos Transgênicos , Comunicação Parácrina , Fosforilação , Proto-Oncogene Mas , Securina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA