Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(12): 1774-1784, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116430

RESUMO

Plasmodium kinases are increasingly recognized as potential novel antiplasmodial targets for the treatment of malaria, but only a small subset of these kinases have had structure-activity relationship (SAR) campaigns reported. Herein we report the discovery of CZC-54252 (1) as an inhibitor of five P. falciparum kinases PfARK1, PfARK3, PfNEK3, PfPK9, and PfPKB. 39 analogues were evaluated against all five kinases to establish SAR at three regions of the kinase active site. Nanomolar inhibitors of each kinase were discovered. We identified common and divergent SAR trends across all five kinases, highlighting substituents in each region that improve potency and selectivity for each kinase. Potent analogues were evaluated against the P. falciparum blood stage. Eight submicromolar inhibitors were discovered, of which 37 demonstrated potent antiplasmodial activity (EC50 = 0.16 µM). Our results provide an understanding of features needed to inhibit each individual kinase and lay groundwork for future optimization efforts toward novel antimalarials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38009092

RESUMO

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

3.
J Biol Chem ; 299(10): 105223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673336

RESUMO

Family B2 or adhesion G protein-coupled receptors (AGPCRs) are distinguished by variable extracellular regions that contain a modular protease, termed the GPCR autoproteolysis-inducing domain that self-cleaves the receptor into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), or seven transmembrane domain (7TM). The NTF and CTF remain bound after cleavage through noncovalent interactions. NTF binding to a ligand(s) presented by nearby cells, or the extracellular matrix anchors the NTF, such that cell movement generates force to induce NTF/CTF dissociation and expose the AGPCR tethered peptide agonist. The released tethered agonist (TA) binds rapidly to the 7TM orthosteric site to activate signaling. The orphan AGPCR, GPR114 was reported to be uncleaved, yet paradoxically capable of activation by its TA. GPR114 has an identical cleavage site and TA to efficiently cleave GPR56. Here, we used immunoblotting and biochemical assays to demonstrate that GPR114 is a cleaved receptor, and the self-cleavage is required for GPR114 TA-activation of Gs and no other classes of G proteins. Mutagenesis studies defined features of the GPR114 and GPR56 GAINA subdomains that influenced self-cleavage efficiency. Thrombin treatment of protease-activated receptor 1 leader/AGPCR fusion proteins demonstrated that acute decryption of the GPR114/56 TAs activated signaling. GPR114 was found to be expressed in an eosinophilic-like cancer cell line (EoL-1 cells) and endogenous GPR114 was efficiently self-cleaved. Application of GPR114 TA peptidomimetics to EoL-1 cells stimulated cAMP production. Our findings may aid future delineation of GPR114 function in eosinophil cAMP signaling related to migration, chemotaxis, or degranulation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Adesão Celular , Peptídeos/farmacologia , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores Acoplados a Proteínas G/química , Humanos
4.
Structure ; 31(5): 553-564.e7, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931277

RESUMO

Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Dobramento de Proteína , Animais , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/química , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Eur J Med Chem ; 249: 115043, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736152

RESUMO

Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Proteínas Quinases , Farmacóforo , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
6.
J Med Chem ; 65(19): 13172-13197, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36166733

RESUMO

Essential plasmodial kinases PfGSK3 and PfPK6 are considered novel drug targets to combat rising resistance to traditional antimalarial therapy. Herein, we report the discovery of IKK16 as a dual PfGSK3/PfPK6 inhibitor active against blood stage Pf3D7 parasites. To establish structure-activity relationships for PfPK6 and PfGSK3, 52 analogues were synthesized and assessed for the inhibition of PfGSK3 and PfPK6, with potent inhibitors further assessed for activity against blood and liver stage parasites. This culminated in the discovery of dual PfGSK3/PfPK6 inhibitors 23d (PfGSK3/PfPK6 IC50 = 172/11 nM) and 23e (PfGSK3/PfPK6 IC50 = 97/8 nM) with antiplasmodial activity (23d Pf3D7 EC50 = 552 ± 37 nM and 23e Pf3D7 EC50 = 1400 ± 13 nM). However, both compounds exhibited significant promiscuity when tested in a panel of human kinase targets. Our results demonstrate that dual PfPK6/PfGSK3 inhibitors with antiplasmodial activity can be identified and can set the stage for further optimization efforts.


Assuntos
Antimaláricos , Parasitos , Plasmodium , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quinase 3 da Glicogênio Sintase , Humanos , Plasmodium falciparum , Pirimidinas , Relação Estrutura-Atividade
7.
ChemMedChem ; 17(12): e202200161, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403825

RESUMO

Deep annotation of a library of 4-anilinoquin(az)olines led to the identification of 7-iodo-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC50 =14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquin(az)olines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.


Assuntos
Neoplasias da Próstata , Inibidores de Proteínas Quinases , Humanos , Masculino , Proteína Quinase C , Inibidores de Proteínas Quinases/farmacologia
8.
Nature ; 604(7907): 757-762, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418682

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) are characterized by the presence of auto-proteolysing extracellular regions that are involved in cell-cell and cell-extracellular matrix interactions1. Self cleavage within the aGPCR auto-proteolysis-inducing (GAIN) domain produces two protomers-N-terminal and C-terminal fragments-that remain non-covalently attached after receptors reach the cell surface1. Upon dissociation of the N-terminal fragment, the C-terminus of the GAIN domain acts as a tethered agonist (TA) peptide to activate the seven-transmembrane domain with a mechanism that has been poorly understood2-5. Here we provide cryo-electron microscopy snapshots of two distinct members of the aGPCR family, GPR56 (also known as ADGRG1) and latrophilin 3 (LPHN3 (also known as ADGRL3)). Low-resolution maps of the receptors in their N-terminal fragment-bound state indicate that the GAIN domain projects flexibly towards the extracellular space, keeping the encrypted TA peptide away from the seven-transmembrane domain. High-resolution structures of GPR56 and LPHN3 in their active, G-protein-coupled states, reveal that after dissociation of the extracellular region, the decrypted TA peptides engage the seven-transmembrane domain core with a notable conservation of interactions that also involve extracellular loop 2. TA binding stabilizes breaks in the middle of transmembrane helices 6 and 7 that facilitate aGPCR coupling and activation of heterotrimeric G proteins. Collectively, these results enable us to propose a general model for aGPCR activation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Adesão Celular , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Humanos , Peptídeos/química , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos
9.
J Med Chem ; 63(23): 14626-14646, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33215924

RESUMO

STK17B is a member of the death-associated protein kinase family and has been genetically linked to the development of diverse diseases. However, the role of STK17B in normal and disease pathology is poorly defined. Here, we present the discovery of thieno[3,2-d] pyrimidine SGC-STK17B-1 (11s), a high-quality chemical probe for this understudied "dark" kinase. 11s is an ATP-competitive inhibitor that showed remarkable selectivity over other kinases including the closely related STK17A. X-ray crystallography of 11s and related thieno[3,2-d]pyrimidines bound to STK17B revealed a unique P-loop conformation characterized by a salt bridge between R41 and the carboxylic acid of the inhibitor. Molecular dynamic simulations of STK17B revealed the flexibility of the P-loop and a wide range of R41 conformations available to the apo-protein. The isomeric thieno[2,3-d]pyrimidine SGC-STK17B-1N (19g) was identified as a negative control compound. The >100-fold lower activity of 19g on STK17B was attributed to the reduced basicity of its pyrimidine N1.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Domínio Catalítico , Células HEK293 , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo
11.
ACS Chem Biol ; 14(7): 1556-1563, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31287657

RESUMO

Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.


Assuntos
Proteína Tirosina Quinase CSK/química , Proteína Tirosina Quinase CSK/genética , Proteína Tirosina Quinase CSK/metabolismo , Humanos , Modelos Moleculares , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Mutação Puntual , Conformação Proteica , Proteólise
12.
Clin Cancer Res ; 22(20): 5087-5096, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27154914

RESUMO

PURPOSE: c-Src has been shown to play a pivotal role in breast cancer progression, metastasis, and angiogenesis. In the clinic, however, the limited efficacy and high toxicity of existing c-Src inhibitors have tempered the enthusiasm for targeting c-Src. We developed a novel c-Src inhibitor (UM-164) that specifically binds the DFG-out inactive conformation of its target kinases. We hypothesized that binding the inactive kinase conformation would lead to improved pharmacologic outcomes by altering the noncatalytic functions of the targeted kinases. EXPERIMENTAL DESIGN: We have analyzed the anti-triple-negative breast cancer (TNBC) activity of UM-164 in a comprehensive manner that includes in vitro cell proliferation, migration, and invasion assays (including a novel patient-derived xenograft cell line, VARI-068), along with in vivo TNBC xenografts. RESULTS: We demonstrate that UM-164 binds the inactive kinase conformation of c-Src. Kinome-wide profiling of UM-164 identified that Src and p38 kinase families were potently inhibited by UM-164. We further demonstrate that dual c-Src/p38 inhibition is superior to mono-inhibition of c-Src or p38 alone. We demonstrate that UM-164 alters the cell localization of c-Src in TNBC cells. In xenograft models of TNBC, UM-164 resulted in a significant decrease of tumor growth compared with controls, with limited in vivo toxicity. CONCLUSIONS: In contrast with c-Src kinase inhibitors used in the clinic (1, 2), we demonstrate in vivo efficacy in xenograft models of TNBC. Our results suggest that the dual activity drug UM-164 is a promising lead compound for developing the first targeted therapeutic strategy against TNBC. Clin Cancer Res; 22(20); 5087-96. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação/fisiologia , Proteína Tirosina Quinase CSK , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Ligação Proteica/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
ACS Chem Biol ; 11(5): 1296-304, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26895387

RESUMO

In the kinase field, there are many widely held tenets about conformation-selective inhibitors that have yet to be validated using controlled experiments. We have designed, synthesized, and characterized a series of kinase inhibitor analogues of dasatinib, an FDA-approved kinase inhibitor that binds the active conformation. This inhibitor series includes two Type II inhibitors that bind the DFG-out inactive conformation and two inhibitors that bind the αC-helix-out inactive conformation. Using this series of compounds, we analyze the impact that conformation-selective inhibitors have on target binding and kinome-wide selectivity.


Assuntos
Dasatinibe/análogos & derivados , Dasatinibe/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Galinhas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química
14.
ACS Med Chem Lett ; 6(8): 898-901, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26286460

RESUMO

We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest.

15.
Angew Chem Int Ed Engl ; 53(27): 7010-3, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24797781

RESUMO

Substrate-competitive kinase inhibitors represent a promising class of kinase inhibitors, however, there is no methodology to selectively identify this type of inhibitor. Substrate activity screening was applied to tyrosine kinases. By using this methodology, the first small-molecule substrates for any protein kinase were discovered, as well as the first substrate-competitive inhibitors of c-Src with activity in both biochemical and cellular assays. Characterization of the lead inhibitor demonstrates that substrate-competitive kinase inhibitors possess unique properties, including cellular efficacy that matches biochemical potency and synergy with ATP-competitive inhibitors.


Assuntos
Inibidores de Proteínas Quinases/metabolismo , Quinases da Família src/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Especificidade por Substrato , Quinases da Família src/química
16.
ACS Chem Biol ; 7(11): 1910-7, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22928736

RESUMO

We have developed the first irreversible inhibitors of wild-type c-Src kinase. We demonstrate that our irreversible inhibitors display improved potency and selectivity relative to that of their reversible counterparts. Our strategy involves modifying a promiscuous kinase inhibitor with an electrophile to generate covalent inhibitors of c-Src. We applied this methodology to two inhibitor scaffolds that exhibit increased cellular efficacy when rendered irreversible. In addition, we have demonstrated the utility of irreversible inhibitors in studying the conformation of an important loop in kinases that can control inhibitor selectivity and cause drug resistance. Together, we have developed a general and robust framework for generating selective irreversible inhibitors from reversible, promiscuous inhibitor scaffolds.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Quinases da Família src/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...