Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(5): 1129-1132, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649674

RESUMO

We demonstrate a simple and power stable 1.5-10.5 µm cascaded mid-infrared 3 MHz supercontinuum fiber laser. To increase simplicity and decrease cost, the design of the fiber cascade is optimized so that no thulium amplifier is needed. Despite the simple design with no thulium amplifier, we demonstrate a high average output power of 86.6 mW. Stability measurements for seven days with 8-9 h operation daily revealed fluctuations in the average power with a standard deviation of only 0.43% and a power spectral density stability of ±0.18dBm/nm for wavelengths <10µm. The high-repetition-rate, robust, and cheap all-fiber design makes this source ideal for applications in spectroscopy and imaging.

2.
Opt Lett ; 45(18): 5161-5164, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932478

RESUMO

We experimentally investigate the influence of varying pulse parameters on the spectral broadening, power spectral density, and relative intensity noise of mid-infrared (mid-IR) in-amplifier cascaded supercontinuum generation (SCG) by varying the pulse duration (35 ps, 1 ns, 3 ns) and repetition rate (100, 500, 1000 kHz). The system is characterized at the output of the erbium-ytterbium-doped in-amplifier SCG stage, the thulium/germanium power redistribution stage, and the passive ZBLAN fiber stage. In doing so, we demonstrate that the output of the later stages depends critically on the in-amplifier stage, and relate this to the onset of modulation instability.

3.
Sci Rep ; 10(1): 8230, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427972

RESUMO

The pulse-to-pulse relative intensity noise (RIN) of near-infrared (near-IR) in-amplifier supercontinuum (SC) sources and mid-IR cascaded SC sources was experimentally and numerically investigated and shown to have significantly lowered noise due to the fundamental effect of gain-induced soliton-spectral alignment. The mid-IR SC source is based on a near-IR in-amplifier SC pumping a cascade of thulium-doped and ZBLAN fibers. We demonstrate that the active thulium-doped fiber not only extend the spectrum, but also to significantly reduce the RIN by up to 22% in the long wavelength region above 2 µm. Using numerical simulations, we demonstrate that the noise reduction is the result of an interplay between absorption-emission processes and nonlinear soliton dynamics leading to the soliton-spectral alignment. In the same way we show that the RIN of the near-IR in-amplifier SC source is already significantly reduced because the spectral broadening takes place in an active fiber that also introduces soliton-spectral alignment. We further show that the low noise properties are transferred to the subsequent fluoride SC, which has a RIN lower than 10% (5%) in a broad region from 1.1-3.6 µm (1.4-3.0 µm). The demonstrated low noise significantly improves the applicability of these broadband sources for mid-IR imaging and spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...