Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 126(3): 224-234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35183339

RESUMO

RNA interference is a mechanism of suppressing gene expression in plants, animals and fungi. This regulation mechanism involves three main enzymes, Dicers (Dcr), Argonautes (Ago) and RNA Dependent RNA Polymerases (Rdrp) allowing to produce smallRNAs. RNA interference and smallRNAs have a role in the plant-microorganisms interaction, either in a pathogenic or in a symbiotic relationships. Alternaria brassicicola is a pathogenic fungus of the Brassicaceae plants. During plant infection, it is able to transmit itself vertically and horizontally, giving advantages for new infection and dissemination. To investigate RNA interference and the presence of smallRNAs in A. brassicicola, an in silico analysis was achieved. Two DCR, 4 AGO and 3 RDRP genes were identified comforting the presence of smallRNAs in A. brassicicola. SmallRNA sequencing from wild-type strain and DCR deleted mutants allowed the identifcation of 17 miRNAs in A. brassicicola. The synthesis of these miRNAs is only weakly influenced by the inactivation of DCR genes suggesting the possible existence of an alternative Dicer-independent miRNA synthesis pathway. Target's prediction of A. brassicicola miRNAs identified genes in the fungus and in the plant model Arabidopsis thaliana. Some miRNAs were predicted to target A. thaliana genes involved in the methylation of histone and in the disease resistance.


Assuntos
Arabidopsis , MicroRNAs , Alternaria/genética , Arabidopsis/microbiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/microbiologia , Interferência de RNA , Sementes
2.
Front Plant Sci ; 11: 611643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552104

RESUMO

Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.

3.
BMC Microbiol ; 19(1): 295, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842747

RESUMO

BACKGROUND: MCC/eisosomes are membrane microdomains that have been proposed to participate in the plasma membrane function in particular by regulating the homeostasis of lipids, promoting the recruitment of specific proteins and acting as provider of membrane reservoirs. RESULTS: Here we showed that several potential MCC/eisosomal protein encoding genes in the necrotrophic fungus A. brassicicola were overexpressed when germinated spores were exposed to antimicrobial defence compounds, osmotic and hydric stresses, which are major constraints encountered by the fungus during the plant colonization process. Mutants deficient for key MCC/eisosome components did not exhibit any enhanced susceptibility to phytoalexins and to applied stress conditions compared to the reference strain, except for a slight hypersensitivity of the ∆∆abpil1a-abpil1b strain to 2 M sorbitol. Depending on the considered mutants, we showed that the leaf and silique colonization processes were impaired by comparison to the wild-type, and assumed that these defects in aggressiveness were probably caused by a reduced appressorium formation rate. CONCLUSIONS: This is the first study on the role of MCC/eisosomes in the pathogenic process of a plant pathogenic fungus. A link between these membrane domains and the fungus ability to form functional penetration structures was shown, providing new potential directions for plant disease control strategies.


Assuntos
Alternaria/genética , Alternaria/patogenicidade , Proteínas Fúngicas/genética , Microdomínios da Membrana , Proteínas de Membrana/metabolismo , Alternaria/enzimologia , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Mutação , Doenças das Plantas/microbiologia , Estresse Fisiológico , Virulência
4.
Front Microbiol ; 10: 1969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543870

RESUMO

Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.

5.
Genome Announc ; 6(6)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439047

RESUMO

Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28955470

RESUMO

BACKGROUND: Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. RESULTS: Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. CONCLUSION: This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.

7.
ISME J ; 11(2): 374-385, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801902

RESUMO

We investigated the molecular and ecological mechanisms involved in niche expansion, or generalism, versus specialization in sympatric plant pathogens. Nopaline-type and octopine-type Agrobacterium tumefaciens engineer distinct niches in their plant hosts that provide different nutrients: nopaline or octopine, respectively. Previous studies revealed that nopaline-type pathogens may expand their niche to also assimilate octopine in the presence of nopaline, but consequences of this phenomenon on pathogen dynamics in planta were not known. Here, we provided molecular insight into how the transport protein NocT can bind octopine as well as nopaline, contributing to niche expansion. We further showed that despite the ability for niche expansion, nopaline-type pathogens had no competitive advantage over octopine-type pathogens in co-infected plants. We also demonstrated that a single nucleotide polymorphism in the nocR gene was sufficient to allow octopine assimilation by nopaline-type strains even in absence of nopaline. The evolved nocR bacteria had higher fitness than their ancestor in octopine-rich transgenic plants but lower fitness in tumors induced by octopine-type pathogens. Overall, this work elucidates the specialization of A. tumefaciens to particular opine niches and explains why generalists do not always spread despite the advantage associated with broader nutritional niches.


Assuntos
Agrobacterium tumefaciens/fisiologia , Arginina/análogos & derivados , Plantas/microbiologia , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/genética , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Moleculares , Plantas Geneticamente Modificadas
8.
PLoS One ; 10(11): e0141718, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26554837

RESUMO

Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated.


Assuntos
Proteínas de Bactérias/fisiologia , Evolução Molecular Direcionada , Percepção de Quorum/fisiologia , Rhodococcus/fisiologia , Fatores de Transcrição/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica/genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Homosserina/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Dobramento de Proteína , Percepção de Quorum/genética , Rhodococcus/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
9.
Genetica ; 143(2): 253-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676013

RESUMO

Rhodococcus erythropolis is a worldwide-distributed actinobacterium that exhibits a remarkable metabolic versatility illustrated by its ability to degrade complex compounds, such as quorum-sensing signals N-acylhomoserine lactones (NAHLs), phenols, sterols and fuel derivatives. Because of its catabolic properties, R. erythropolis strains are proposed as anti-biofouling agents against NAHL-dependent biofilms, biocontrol agents against NAHL-emitting plant pathogens, and bioremediation agents in contaminated waters and soils. Here, we used the PacBio technology to resolve the complete genome sequence of the biocontrol strain R. erythropolis R138. Its genome consisted in a circular chromosome (6,236,862 bp), a linear plasmid pLRE138 (477,915 bp) and a circular plasmid pCRE138 (91,729 bp). In addition, draft genomes of five R. erythropolis strains were determined by Illumina technology and compared with the other five R. erythropolis genomes that are available in public databases: 5,825 common CDSs were present in all of the eleven analyzed genomes and represented up to 87 % of those identified in R. erythropolis R138. This study highlighted the high proportion of core-genome genes in R. erythropolis, but a high variability of the plasmid content. Key-metabolic pathways which are involved in the degradation of complex molecules, such as NAHLs and phenol, catechol and sterol derivatives are coded by the R. erythropolis core-genome.


Assuntos
Genoma Bacteriano , Plasmídeos/genética , Rhodococcus/genética , DNA Bacteriano/genética , Mapeamento Físico do Cromossomo , Percepção de Quorum , Análise de Sequência de DNA/métodos , Microbiologia do Solo
10.
PLoS One ; 9(3): e91434, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614090

RESUMO

Yeast Pichia anomala strain Kh6 Kurtzman (Saccharomycetales: Endomycetaceae) exhibits biological control properties that provide an alternative to the chemical fungicides currently used by fruit or vegetable producers against main post-harvest pathogens, such as Botrytis cinerea (Helotiales: Sclerotiniaceae). Using an in situ model that takes into account interactions between organisms and a proteomic approach, we aimed to identify P. anomala metabolic pathways influenced by the presence of B. cinerea. A total of 105 and 60 P. anomala proteins were differentially represented in the exponential and stationary growth phases, respectively. In the exponential phase and in the presence of B. cinerea, the pentose phosphate pathway seems to be enhanced and would provide P. anomala with the needed nucleic acids and energy for the wound colonisation. In the stationary phase, P. anomala would use alcoholic fermentation both in the absence and presence of the pathogen. These results would suggest that the competitive colonisation of apple wounds could be implicated in the mode of action of P. anomala against B. cinerea.


Assuntos
Botrytis/fisiologia , Malus/microbiologia , Redes e Vias Metabólicas , Pichia/metabolismo , Proteínas Fúngicas/metabolismo , Via de Pentose Fosfato , Controle Biológico de Vetores , Pichia/crescimento & desenvolvimento , Proteoma/metabolismo
11.
Genome Announc ; 2(2)2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24675862

RESUMO

Rhodococcus erythropolis strain R138 was isolated from the rhizosphere of Solanum tuberosum and selected for its capacity to degrade N-acyl-homoserine lactones, quorum-sensing signals used as communication molecules by the potato pathogens Pectobacterium and Dickeya. Here, we report the genome sequence of Rhodococcus erythropolis strain R138.

12.
Genome Announc ; 1(3)2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23788545

RESUMO

Pectobacterium atrosepticum strain CFBP6276 is a pectinolytic enterobacterium causing blackleg and soft rot of the stem and tuber of Solanum tuberosum. Its virulence is under the control of quorum sensing, with N-acylhomoserine lactones as communication signals. Here, we report the genome sequence of P. atrosepticum strain CFBP6276.

13.
J Microbiol Methods ; 77(1): 8-16, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19318052

RESUMO

An improved RNA isolation method based on the acid guanidinium-phenol-chloroform (AGPC) procedure using saline precipitation but no column purification was evaluated for quantifying microbial gene expression using reverse transcription quantitative PCR (RT-qPCR) in rumen contents. The method provided good RNA integrity and quantity extracts. The transcript levels of eight glycoside hydrolase (GH) genes of the major rumen fibrolytic bacterium Fibrobacter succinogenes were quantified in the complex microbiota of a conventional sheep and in a gnotobiotic lamb harboring a microflora containing F. succinogenes S85 as the sole cellulolytic microorganism. This study validated the improved RNA isolation method, RT-qPCR conditions to quantify GH transcripts using either the F. succinogenes S85 tuf gene or the 16S rRNA-encoding gene (rrs) as the reference gene, and demonstrated the need to work with good quality RNAs. Transcripts from all the selected genes cel3, endA(FS), celF and endB endoglucanase genes, cedA cellodextrinase gene, mlg lichenase gene, and xynC and xynD xylanase genes of F. succinogenes S85 were detected and quantified at varying levels in the rumen content of the two animal models. This study opens new perspectives in studying microbial gene expression in the rumen of both conventional and gnotobiotic sheep.


Assuntos
Proteínas de Bactérias/genética , Fibrobacter/enzimologia , Vida Livre de Germes , Glicosídeo Hidrolases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rúmen/microbiologia , Animais , Fibrobacter/genética , Fibrobacter/isolamento & purificação , Ovinos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...