Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794623

RESUMO

Dual networks formed by entangled polymer chains and wormlike surfactant micelles have attracted increasing interest in their application as thickeners in various fields since they combine the advantages of both polymer- and surfactant-based fluids. In particular, such polymer-surfactant mixtures are of great interest as novel hydraulic fracturing fluids with enhanced properties. In this study, we demonstrated the effect of the chemical composition of an uncharged polymer poly(vinyl alcohol) (PVA) and pH on the rheological properties and structure of its mixtures with a cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride already exploited in fracturing operations. Using a combination of several complementary techniques (rheometry, cryo-transmission electron microscopy, small-angle neutron scattering, and nuclear magnetic resonance spectroscopy), we showed that a small number of residual acetate groups (2-12.7 mol%) in PVA could significantly reduce the viscosity of the mixed system. This result was attributed to the incorporation of acetate groups in the corona of the micellar aggregates, decreasing the molecular packing parameter and thereby inducing the shortening of worm-like micelles. When these groups are removed by hydrolysis at a pH higher than 7, viscosity increases by five orders of magnitude due to the growth of worm-like micelles in length. The findings of this study create pathways for the development of dual semi-interpenetrating polymer-micellar networks, which are highly desired by the petroleum industry.

2.
Res Sq ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766114

RESUMO

Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.

3.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645082

RESUMO

Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.

4.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38585879

RESUMO

The stimulator of interferon genes (STING) pathway links innate and adaptive antitumor immunity and therefore plays an important role in cancer immune surveillance. This has prompted widespread development of STING agonists for cancer immunotherapy, but pharmacological barriers continue to limit the clinical impact of STING agonists and motivate the development of drug delivery systems to improve their efficacy and/or safety. To address this challenge, we developed SAPCon, a STING-activating polymer-drug conjugate platform based on strain-promoted azide-alkyne cycloaddition of dimeric-amidobenzimidazole (diABZI) STING agonists to hydrophilic polymer chains through an enzyme-responsive chemical linker. To synthesize a first-generation SAPCon, we designed a diABZI prodrug modified with a DBCO reactive handle a cathepsin B-cleavable spacer for intracellular drug release and conjugated this to pendant azide groups on a 100 kDa poly(dimethyla acrylamide-co-azide methacrylate) copolymer backbone to increase circulation time and enable passive tumor accumulation. We found that intravenously administered SAPCon accumulated at tumor sites where they it was endocytosed by tumor-associated myeloid cells, resulting in increased STING activation in tumor tissue compared to a free diABZI STING agonist. Consequently, SAPCon promoted an immunogenic tumor microenvironment, characterized by increased frequency of activated macrophages and dendritic cells and improved infiltration of CD8+ T cells, resulting in inhibition of tumor growth, prolonged survival, and increased response to anti-PD-1 immune checkpoint blockade in orthotopic models of breast cancer. Collectively, these studies position SAPCon as a modular and programmable platform for improving the efficacy of systemically administered STING agonists for cancer immunotherapy.

5.
Adv Healthc Mater ; : e2303815, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648653

RESUMO

RNA ligands of retinoic acid-inducible gene I (RIG-I) are a promising class of oligonucleotide therapeutics with broad potential as antiviral agents, vaccine adjuvants, and cancer immunotherapies. However, their translation has been limited by major drug delivery barriers, including poor cellular uptake, nuclease degradation, and an inability to access the cytosol where RIG-I is localized. Here this challenge is addressed by engineering nanoparticles that harness covalent conjugation of 5'-triphospate RNA (3pRNA) to endosome-destabilizing polymers. Compared to 3pRNA loaded into analogous nanoparticles via electrostatic interactions, it is found that covalent conjugation of 3pRNA improves loading efficiency, enhances immunostimulatory activity, protects against nuclease degradation, and improves serum stability. Additionally, it is found that 3pRNA could be conjugated via either a disulfide or thioether linkage, but that the latter is only permissible if conjugated distal to the 5'-triphosphate group. Finally, administration of 3pRNA-polymer conjugates to mice significantly increases type-I interferon levels relative to analogous carriers that use electrostatic 3pRNA loading. Collectively, these studies have yielded a next-generation polymeric carrier for in vivo delivery of 3pRNA, while also elucidating new chemical design principles for covalent conjugation of 3pRNA with potential to inform the further development of therapeutics and delivery technologies for pharmacological activation of RIG-I.

6.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535689

RESUMO

We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe2O4 structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and "green" way to prepare CoFe2O4 nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites.

7.
ACS Nano ; 18(9): 6845-6862, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386282

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8+ T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8+ cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8+ T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor 4 Toll-Like , Nanovacinas , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antígenos , Peptídeos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
8.
Cancer Res Commun ; 3(9): 1800-1809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691856

RESUMO

It was recently found that patients with relapsing remitting multiple sclerosis exhibit widespread loss of adenosine-to-inosine (A-to-I) RNA editing, which contributes to the accumulation of immunostimulatory double-stranded Alu RNA in circulating leukocytes and an attendant increase in levels of proinflammatory cytokines (e.g., type I IFNs). A specific Alu RNA (i.e., AluJb RNA) was implicated in activating multiple RNA-sensing pathways and found to be a potent innate immune agonist. Here, we have performed a bioinformatic analysis of A-to-I RNA editing in human melanoma samples and determined that pre-therapy levels of A-to-I RNA editing negatively correlate with survival times, suggesting that an accumulation of endogenous double-stranded Alu RNA might contribute to cancer patient survival. Furthermore, we demonstrated that immunostimulatory Alu RNA can be leveraged pharmacologically for cancer immunotherapy. AluJb RNA was in vitro transcribed and then formulated with endosome-destabilizing polymer nanoparticles to improve intracellular delivery of the RNA and enable activation of RNA-sensing pathways. AluJb RNA/polymer complexes (i.e., Alu-NPs) were engineered to form colloidally stable nanoparticles that exhibited immunostimulatory activity in vitro and in vivo. Finally, the therapeutic potential of Alu-NPs for the treatment of cancer was demonstrated by attenuated tumor growth and prolonged survival in the B16.F10 murine melanoma tumor model. Thus, these data collectively implicate intratumoral Alu RNA as a potentiator of antitumor innate immunity and identify AluJb RNA as a novel nucleic acid immunotherapeutic for cancer. Significance: Loss of A-to-I editing leads to accumulation of unedited Alu RNAs that activate innate immunity via RNA-sensing pattern recognition receptors. When packaged into endosome-releasing polymer nanoparticles, AluJB RNA becomes highly immunostimulatory and can be used pharmacologically to inhibit tumor growth in mouse melanoma models. These findings identify Alu RNAs as a new class of nucleic acid innate immune agonists for cancer immunotherapy.


Assuntos
Melanoma , Ácidos Nucleicos , Humanos , Animais , Camundongos , Imunoterapia , Imunização , RNA de Cadeia Dupla , Melanoma/genética
9.
Nat Biomed Eng ; 7(9): 1156-1169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127708

RESUMO

The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site. In rodent models of endotoxin-induced inflammation, psoriasis, periodontal disease and osteoarthritis, the fusion protein remained in the inflamed tissues and joints for about 1 week after injection, and the amelioration of local inflammation, disease progression and inflammatory pain in the animals were concomitant with homoeostatic preservation of the tissues and with the absence of global immune suppression. IDO-Gal3 may serve as an immunomodulatory enzyme for the control of focal inflammation in other inflammatory conditions.


Assuntos
Galectina 2 , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Progressão da Doença
10.
Sci Immunol ; 8(83): eadd1153, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146128

RESUMO

The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
11.
Sci Immunol ; 8(82): eabn0484, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115913

RESUMO

The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Intestinos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
12.
Biomedicines ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830781

RESUMO

Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.

13.
Biomaterials ; 294: 122001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716589

RESUMO

Antigen-specific therapies allow for modulation of the immune system in a disease relevant context without systemic immune suppression. These therapies are especially valuable in autoimmune diseases such as multiple sclerosis (MS), where autoreactive T cells destroy myelin sheath. This work shows that an antigen-specific dual-sized microparticle (dMP) system can effectively halt and reverse disease progression in a mouse model of MS. Current MS treatments leave patients immunocompromised, but the dMP formulation spares the immune system as mice can successfully clear a Listeria Monocytogenes infection. Furthermore, we highlight design principles for particle based immunotherapies including the importance of delivering factors specific for immune cell recruitment (GM-CSF or SDF-1), differentiation (GM-CSF or FLT3L) and suppression (TGF-ß or VD3) in conjunction with disease relevant antigen, as the entire formulation is required for maximum efficacy. Lastly, the dMP scheme relies on formulating phagocytosable and non-phagocytosable MP sizes to direct payload to target either cell surface receptors or intracellular targets, as the reverse sized dMP formulation failed to reverse paralysis. We also challenge the design principles of the dMP system showing that the size of the MPs impact efficacy and that GM-CSF plays two distinct roles and that both of these must be replaced to match the primary effect of the dMP system. Overall, this work shows the versatile nature of the dMP system and expands the knowledge in particle science by emphasizing design tenets to guide the next generation of particle based immunotherapies.


Assuntos
Doenças Autoimunes , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Antígenos , Linfócitos T
14.
Polymers (Basel) ; 15(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38232034

RESUMO

We report on the effect of a hydrocarbon (n-dodecane) on the rheological properties and shapes of the hybrid wormlike micelles (WLMs) of a surfactant potassium oleate with an embedded polymer poly(4-vinylpyridine). With and without hydrocarbon solutions, the hybrid micelles exhibit the same values of viscosity at shear rates typical for hydraulic fracturing (HF) tests, as solutions of polymer-free WLMs. Therefore, similar to WLMs of surfactants, they could be applied as thickeners in HF fluids without breakers. At the same time, in the presence of n-dodecane, the hybrid micelles have much higher drag-reducing efficiency compared to microemulsions formed in polymer-free systems since they form "beads-on-string" structures according to results obtained using cryo-transmission electron microscopy (cryo-TEM), dynamic-light scattering (DLS), and small-angle X-ray scattering (SAXS). Consequently, they could also act as drag-reducing agents in the pipeline transport of recovered oil. Such a unique multi-functional additive to a fracturing fluid, which permits its concurrent use in oil production and oil transportation, has not been proposed before.

15.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501481

RESUMO

Salt-induced structural transformation of charged hybrid surfactant/polymer micelles formed by potassium oleate and poly(4-vinylpyridine) was investigated by cryo-TEM, SANS with contrast variation, DLS, and 2D NOESY. Cryo-TEM data show, that at small salt concentration beads-on-string aggregates on polymer chains are formed. KCl induces the transformation of those aggregates into rods, which is due to the screening of the electrostatic repulsion between similarly charged beads by added salt. In a certain range of salt concentration, the beads-on-string aggregates coexist with the rodlike ones. In the presence of polymer, the sphere-to-rod transition occurs at higher salt concentration than in pure surfactant system indicating that hydrophobic polymer favors the spherical packing of potassium oleate molecules. The size of micelles was estimated by DLS. The rods that are formed in the hybrid system are much shorter than those in polymer-free surfactant solution suggesting the stabilization of the semi-spherical endcaps of the rods by embedded polymer. 2D NOESY data evidence that in the spherical aggregates the polymer penetrates deep into the core, whereas in tighter packed rodlike aggregates it is located mainly at core/corona interface. According to SANS with contrast variation, inside the rodlike aggregates the polymer adopts more compact coil conformation than in the beads-on-string aggregates. Such adaptive self-assembled polymer-surfactant nanoparticles with water-insoluble polymer are very promising for various applications including drag reduction at transportation of fluids.

16.
Proc Natl Acad Sci U S A ; 119(43): e2205417119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256820

RESUMO

Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Antígenos , Citocinas , Camundongos Endogâmicos C57BL , Paralisia , Catepsinas , Imunossupressores/uso terapêutico
17.
iScience ; 24(4): 102307, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870128

RESUMO

Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans.

18.
Adv Healthc Mater ; 9(11): e2000164, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32519501

RESUMO

Autoimmune diseases affect 10% of the world's population, and 1 in 200 people worldwide suffer from either multiple sclerosis (MS) or type 1 diabetes (T1D). While the targeted organ systems are different, MS and T1D share similarities in terms of autoreactive immune cells playing a critical role in pathogenesis. Both diseases can be managed only symptomatically without curative remission, and treatment options are limited and non-specific. Most current therapies cause some degree of systemic immune suppression, leaving the patients susceptible to opportunistic infections and other complications. Thus, there is considerable interest in the development of immunotherapies not associated with generalized immune suppression for these diseases. This review presents current and preclinical strategies for MS and T1D treatment, emphasizing those aimed to modulate the immune response, including the most recent strategies for tolerance induction. A central focus is on the emerging approaches using nano- and microparticle platforms, their evolution as immunotherapeutic carriers, including those incorporating specific antigens to induce tolerance and reduce unwanted generalized immune suppression.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Esclerose Múltipla , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Tolerância Imunológica , Imunoterapia , Esclerose Múltipla/tratamento farmacológico
19.
Soft Matter ; 14(23): 4792-4804, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29808227

RESUMO

Incorporation of polymer chains into wormlike surfactant micelles, which find a large range of applications, offers the opportunity to modify their structure and properties. In this paper, using spectroscopic, scattering and rheological techniques and computer simulations, we study the incorporation of poly(4-vinylpyridine) of two different molecular weights (MWs) into entangled networks of wormlike surfactant micelles of potassium oleate. Using NMR-spectroscopy we show that, independent of its MW, the polymer incorporates into the core-corona interface of the surfactant micelles. According to SANS data, the polymer does not alter the micelle structure or the micelle radius, but diminishes the packing density of the surfactant. At the same time, rheology reveals a stark difference between the surfactant networks with embedded polymers of different MWs. Networks with the higher-MW polymer possess larger viscosity and a longer relaxation time, which we attribute to the larger length of the hybrid micelles. Moreover, we demonstrate that in an intermediate concentration range the higher-MW polymer is able to link neighbouring surfactant micelles together, which has never been previously observed. However, with a further increase in polymer content the micelles become smaller due to the high breaking susceptibility of the boundaries of polymer-containing sections, leading to the stabilization of micellar end-caps by the embedded macromolecules. This process is more prominent in the case of the shorter polymer. Our finding that an increased MW of macromolecules permits the formation of longer hybrid micelles and enhances their rheological properties is of obvious importance for the fundamental understanding of polymer-surfactant interactions and the development of new industrial formulations based on hybrid polymer-wormlike surfactant micelles.

20.
J Phys Chem B ; 120(49): 12547-12556, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973827

RESUMO

Rheological properties of aqueous solutions of long-tailed cationic surfactant erucyl bis-(hydroxyethyl)methylammonium chloride (EHAC) were examined as a function of concentration Cs of different inorganic salts (KCl, CaCl2, and LaCl3) at a fixed surfactant concentration of 0.6 wt %. The structural evolution of micelles was followed by small-angle neutron scattering and cryogenic transmission electron microscopy. It was observed that, upon addition of salt, the zero-shear viscosity η0 of semidilute surfactant solutions goes through a maximum by passing the following three regimes: η0 ∼ Cs10 (regime I), η0 ∼ Cs3.5 (regime II), and η0 ∼ Cs-2 (regime III). In regime I, the micelles grow in length; in regime II, the linear growth of micelles proceeds simultaneously with their branching; and in regime III, the branching becomes dominating. With increase in the salt valence, the viscosity curves shift to a lower salt content, indicating that these salts are more effective in inducing micellar elongation and branching, as they contain a larger amount of anionic species Cl- screening the repulsion between cationic surfactant heads. Diverse roles of salt co- and counterions (i.e., salt ions that are similar and oppositely charged with respect to surfactant head groups) at different salt concentrations were demonstrated. It was shown that at low salt concentrations corresponding to the rising branch of the viscosity curve (regimes I and II), salt counterions (Cl-) fully determine the rheological behavior of the system. At high salt concentrations, when the electrostatic repulsions between micelles and salt co-ions are essentially screened, the co-ions start affecting the rheological properties. Under these conditions, monovalent co-ions (K+) provide much lower viscosity of surfactant solutions than the multivalent ones (Ca2+, La3+), which is consistent with theoretical predictions that suggest the penetration of K+ inside the micellar corona increasing the charge of the micelles and therefore hindering their growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...