Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 81: 39-45, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29482178

RESUMO

The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times.


Assuntos
Materiais Biocompatíveis/química , Fenômenos Mecânicos , Poliésteres/química , Materiais Biocompatíveis/metabolismo , Hidrólise , Permeabilidade , Poliésteres/metabolismo , Temperatura
2.
Gels ; 4(2)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30674823

RESUMO

Polysaccharide hydrogels have been increasingly utilized in various fields. In this review, we focus on polysaccharide-based hydrogels used as probiotic delivery systems. Probiotics are microorganisms with a positive influence on our health that live in the intestines. Unfortunately, probiotic bacteria are sensitive to certain conditions, such as the acidity of the gastric juice. Polysaccharide hydrogels can provide a physical barrier between encapsulated probiotic cells and the harmful environment enhancing the cells survival rate. Additionally, hydrogels improve survivability of probiotic bacteria not only under gastrointestinal track conditions but also during storage at various temperatures or heat treatment. The hydrogels described in this review are based on selected polysaccharides: alginate, κ-carrageenan, xanthan, pectin and chitosan. Some hydrogels are obtained from the mixture of two polysaccharides or polysaccharide and non-polysaccharide compounds. The article discusses the efficiency of probiotic delivery systems made of single polysaccharide, as well as of systems comprising more than one component.

3.
Inorg Chem ; 56(3): 1349-1365, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106382

RESUMO

A family of homo- and heteroleptic zinc complexes bearing aminonaphtholate ligands was synthesized and fully characterized. Using NMR spectroscopy and DFT calculation, bis-alkoxy-bridged complexes [LZn(µ-OR)]2 were confirmed to have dimeric structures in solution, analogous to those obtained via X-ray crystallography. Surprisingly, a detailed experimental and theoretical study of the catalytic activity of [LZn(µ-OR)]2 in the ring-opening polymerization (ROP) of lactides showed that although well-defined alkoxy dimers possess a single-site structural motif, the most active initiator is obtained during in situ alcoholysis of the alkylzinc precursor. These results indicate that rational ancillary and alkoxy ligand design that takes into account its mutual interaction on monomer coordination may be key to the synthesis of new high-performance ROP catalysts.

4.
J Mech Behav Biomed Mater ; 66: 144-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27871052

RESUMO

Materials with shape memory effect (SME) have already been widely used in the medical field. The interesting part of this group is represented by double function materials. The bioresorption and SME ability are common in polyesters implants. The first information about vascular stent made of bioresorbable polyester with SME was published in 2000. However, there are not many investigations about SME control of elements in the aspect of material processing. In the present work, the ability to control the shape memory (SM) of bioresorbable and semicrystalline poly(L-lactide) (PLLA) is investigated. The studies are based on the unexpected effect of material orientation which was demonstrated even at low percentage deformation in crystallized mould injected material. The presented studies revealed that the different degrees of crystallinity obtained during processing might be a useful switch to create a tailored SME for a specific application. The prepared samples of variable morphology revealed a possibility to control the value of material stress during permanent shape recovery. The degree of shape recovery of the prepared samples was also controlable. The highest stress value observed during permanent shape recovery reached 10MPa for the sample annealed 60min at 115°C even when the sample was only deformed in 8%. The other significant aspect of this work is to present the problem of slow crystallization of the material during and after processing (cooling rate) as well as the possibility of negative SME change during the shelf life of the fabric.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Stents , Cristalização , Teste de Materiais , Polímeros
5.
Materials (Basel) ; 9(5)2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773432

RESUMO

The (trans)esterification reaction of bacterial biopolymers with a selected bioactive compound with a hydroxyl group was applied as a convenient method for obtaining conjugates of such compound. Tyrosol, a naturally occurring phenolic compound, was selected as a model of a bioactive compound with a hydroxyl group. Selected biodegradable polyester and polyamide, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) and poly-γ-glutamic acid (γ-PGA), respectively, were used. The (trans)esterification reactions were carried out in melt mediated by 4-toluenesulfonic acid monohydrate. The structures of (trans)esterification products were established at the molecular level with the aid of ESI-MS² (electrospray ionization tandem mass spectrometry) and/or ¹H NMR (nuclear magnetic resonance) techniques. Performed analyses confirmed that the developed method leads to the formation of conjugates in which bioactive compounds are covalently bonded to biopolymer chains. The amount of covalently bonded bioactive compounds in the resulting conjugates depends on the type of biopolymers applied in synthesis.

6.
Materials (Basel) ; 9(5)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28773492

RESUMO

We report on the ability of bacteria to produce biodegradable polyhydroxyalkanoates (PHA) using oxidized polyethylene wax (O-PEW) as a novel carbon source. The O-PEW was obtained in a process that used air or oxygen as an oxidizing agent. R. eutropha H16 was grown for 48 h in either tryptone soya broth (TSB) or basal salts medium (BSM) supplemented with O-PEW and monitored by viable counting. Study revealed that biomass and PHA production was higher in TSB supplemented with O-PEW compared with TSB only. The biopolymers obtained were preliminary characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The detailed structural evaluation at the molecular level was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The study revealed that, when TSB was supplemented with O-PEW, bacteria produced PHA which contained 3-hydroxybutyrate and up to 3 mol % of 3-hydroxyvalerate and 3-hydroxyhexanoate co-monomeric units. The ESI-MS/MS enabled the PHA characterization when the content of 3-hydroxybutyrate was high and the appearance of other PHA repeating units was very low.

7.
Biomacromolecules ; 14(4): 1181-8, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23464789

RESUMO

A highly selective method is described for controlling the degradation of polyhydroxyalkanoates, PHA, via a reduction reaction that uses lithium borohydride. Using this method, oligo(hydroxyalkanoate)diols derived from a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolyester [poly(3HB-co-4HB)] and from synthetic atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB) were obtained. The structural characterization of the oligo(hydroxyalkanoate)diols was conducted using NMR and ESI-mass spectrometry analyses, which confirmed that oligomers that were terminated by two hydroxyl end groups were formed. The reduction of the ester groups occurred in a statistical way regardless of the chemical structure of the comonomer units or of the microstructure of the polyester chain. The presented method can be used to synthesize various PHA oligodiols that are potentially useful in the further synthesis of tailor-made biodegradable materials.


Assuntos
Materiais Biocompatíveis/síntese química , Poli-Hidroxialcanoatos/química , Materiais Biocompatíveis/química , Boroidretos/química , Compostos de Lítio/química , Poliésteres/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...