Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(6)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813101

RESUMO

Recently, a new layered material, Mn3Si2Te6, was identified to be a semiconductor with nodal-line topological property and ferrimagnetic ground state. In this work, we propose a series of structures, M3Si2Te6(M = alkaline earth and transition metals), and systematically investigate their mechanical, magnetic and electronic properties, and the strain effect to enrich the family of the layered materials for practical applications. We find 13 stable M3Si2Te6, including 5 semiconductors (M = Ca, Sr, Fe, Ru and Os) and 8 metals (M = Sc, Ti, Nb, Ta, Cr, Mo, W and Tc). Two structures (M = Ti and Cr) are antiferromagnetic (AFM), while other structures are non-magnetic (NM). Similar to Mn3Si2Te6, the AFM structures exhibit magnetic anisotropy energies (MAEs) and semiconductors have anisotropic electron effective masses. We further show that compressions along thez-axis can effectively tune the electronic and magnetic properties, such as the semiconductor-metal and NM-AFM transition in Fe3Si2Te6, the two-fold degeneracy of the valence band maximums in Sr3Si2Te6, as well as the reduced MAE for all magnetic structures. These results demonstrate the diverse properties of the layered M3Si2Te6family and provide promising theoretical predictions for the future design of new layered materials.

2.
Phys Chem Chem Phys ; 25(28): 18691-18697, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403619

RESUMO

Recently, two-dimensional (2D) metal sulfide halides have attracted much attention due to their unique magnetic and electronic properties. In this work, we design a family of 2D MSXs (M = Ti, V, Mn, Fe, Co, and Ni, X = Br and I) and investigate their structural, mechanical, magnetic, and electronic properties based on first-principles calculations. We find that TiSI, VSBr, VSI, CoSI, NiSBr, and NiSI are kinetically, thermodynamically, and mechanically stable. Other 2D MSXs are unstable because MnSBr, MnSI, FeSBr, FeSI and CoSBr show significant imaginary phonon dispersions and TiSBr has a negative elastic constant (C44). All stable MSXs are magnetic, and their ground states vary with different compositions. TiSI, VSBr, and VSI are semiconductors with anti-ferromagnetic (AFM) ground states, while CoSI, NiSBr, and NiSI are half-metallic and ferromagnetic (FM). The AFM character is contributed by the super-exchange interactions, while the FM states are related to the carrier-mediated double-exchange. Our findings demonstrate the effectiveness of composition engineering in designing novel 2D multifunctional materials with properties suitable for various applications.

3.
Small ; 19(5): e2205638, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417556

RESUMO

Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.

4.
Materials (Basel) ; 15(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36143576

RESUMO

In the present study, microstructural evolution and hardness of the friction stir processed (FSPed) SAF 2507 super duplex stainless steel fabricated at a rotational speed of 650 rpm and a traverse speed of 60 mm/min were investigated. A scanning electron microscope (SEM) equipped with an electron backscatter diffraction (EBSD) detector was used to study the microstructure of the stir zone. The grain sizes of austenite and ferrite in the FSPed 2507 were found to be smaller (0.75 and 0.96 µm) than those of the substrate (6.6 and 5.6 µm) attributed to the occurrence of continuous dynamic recrystallization (CDRX) in both phases. Higher degree of grain refinement and DRX were obtained at the advancing side of the FSPed specimens due to higher strain and temperature. A non-uniform hardness distribution was observed along the longitudinal direction of the SZ. The maximum hardness was obtained at the bottom (407 HV1).

5.
Small ; 17(43): e2101605, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310054

RESUMO

Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.

6.
Acta Biomater ; 112: 182-189, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32470525

RESUMO

Deformability of micro/nanometer sized particles plays an important role in particle-cell interactions and thus becomes a key parameter in carrier design in biomedicine application such as drug delivery and vaccinology. Yet the influence of material's deformability on the cellular fate of the particles as well as physiology response of live cells are to be understood. Here we show the cellular fate of needle shaped (high aspect ratio ~25) PLGA-PEG copolymer fibers depending on their deformability. We found that all the fibers entered murine macrophage cells (RAW 264.7) via phagocytosis. While the fibers of high apparent Young's modulus (average value = 872 kPa) maintained their original shape upon phagocytosis, their counterparts of low apparent Young's modulus (average value = 56 kPa) curled in cells. The observed deformation of fibers of low apparent Young's modulus in cells coincided with abnormal intracellular actin translocation and absence of lysosome/phagosome fusion in macrophages, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology. STATEMENT OF SIGNIFICANCE: Particles are increasingly important in the field of biomedicine, especially when they are serving as drug carriers. Physical cues, such as mechanical properties, were shown to provide insight into their stability and influence on physiology inside the cell. In the current study, we managed to fabricate 5 types of needle shaped PLGA-PEG fibers with controlled Young's modulus. We found that hard fibers maintained their original shape upon phagocytosis, while soft fibers were curled by actin compressive force inside the cell, causing abnormal actin translocation and impediment of lysosome/phagosome fusion, suggesting the important role of material mechanical properties and mechano-related cellular pathway in affecting cell physiology.


Assuntos
Actinas , Fenômenos Mecânicos , Animais , Diferenciação Celular , Módulo de Elasticidade , Camundongos
7.
ACS Appl Mater Interfaces ; 9(7): 5959-5967, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28112954

RESUMO

Ni3S2 nanowire arrays doped with vanadium(V) are directly grown on nickel foam by a facile one-step hydrothermal method. It is found that the doping can promote the formation of Ni3S2 nanowires at a low temperature. The doped nanowires show excellent electrocatalytic performance toward hydrogen evolution reaction (HER), and outperform pure Ni3S2 and other Ni3S2-based compounds. The stability test shows that the performance of V-doped Ni3S2 nanowires is improved and stabilized after thousands of linear sweep voltammetry test. The onset potential of V-doped Ni3S2 nanowire can be as low as 39 mV, which is comparable to platinum. The nanowire has an overpotential of 68 mV at 10 mA cm-2, a relatively low Tafel slope of 112 mV dec-1, good stability and high Faradaic efficiency. First-principles calculations show that the V-doping in Ni3S2 extremely enhances the free carrier density near the Fermi level, resulting in much improved catalytic activities. We expect that the doping can be an effective way to enhance the catalytic performance of metal disulfides in hydrogen evolution reaction and V-doped Ni3S2 nanowire is one of the most promising electrocatalysts for hydrogen production.

8.
Sci Rep ; 6: 34186, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27686869

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs.

9.
Nanoscale Res Lett ; 10(1): 480, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26659611

RESUMO

As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

10.
Phys Chem Chem Phys ; 17(38): 24820-5, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26344564

RESUMO

Nanostructures have attracted increasing interest for applications in electrolysis of water as electrocatalysts. In this work, the edge-catalytic effects of one dimensional (1D) VS2 nanoribbons with various edge configurations and widths have been investigated based on first-principles calculations. We show that the catalytic ability of VS2 nanoribbons strongly depends on their edge structure, edge configuration, and width. We find that the S-edges of VS2 nanoribbons are more active in electrolysis of water than V-edges due to their optimal Gibbs free energy for hydrogen evolution reaction in a wider range of hydrogen coverages. We also find that narrow nanoribbons show better catalytic performance than their wide counterparts. We further show that the S-edge of narrow VS2 nanoribbons with their V-edge covered by eight sulfur atoms has near-zero Gibbs free energy of hydrogen adsorption and comparable catalytic performance with Pt to a wide range of hydrogen coverage, which is contributed to its metallic characteristic. We expect that VS2 nanoribbons would be a promising 1D catalyst in electrolysis of water because of their impressive catalytic abilities both on the basal planes and edges.

11.
J Mater Sci Mater Med ; 22(10): 2249-59, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21850513

RESUMO

In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO(2)/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO(2) (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7-10 µm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO(2) and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks' solution at 37°C). The HA/TiO(2)/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO(2)/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO(2) and CNT contents for eliminating micro-cracks and micro-pores.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Nanotubos de Carbono/química , Titânio/química , Corrosão , Eletroquímica , Eletroforese , Microscopia Eletrônica de Varredura , Estresse Mecânico
12.
J Nanosci Nanotechnol ; 11(12): 10740-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408986

RESUMO

In order to improve the bone bioactivity and osteointegration of metallic implants, hydroxyapatite (HA) is often coated on their surface so that a real bond with the surrounding bone tissue can be formed. In the present study, cathodic electrophoretic deposition (EPD) has been attempted for depositing nanostructured HA coatings on titanium alloy Ti6Al4V followed by sintering at 800 degrees C. Nano-sized HA powder was used in the EPD process to produce dense coatings. Moreover, multiwalled carbon nanotubes (CNTs) were also used to reinforce the HA coating for enhancing its mechanical strength. The surface morphology, compositions and microstructure of the monolithic coating of HA and nanocomposite coatings of HA with different CNT contents (4 to 25%) on Ti6Al4V were investigated by scanning-electron microscopy, energy-dispersive X-ray spectroscopy and Xray diffractometry, respectively. Electrochemical corrosion behavior of the various coatings in Hanks' solution at 37 degrees C was investigated by means of open-circuit potential measurement and cyclic potentiodynamic polarization tests. Surface hardness, adhesion strength and bone bioactivity of the coatings were also studied. The HA and HA/CNT coatings had a thickness of about 10 microm, with corrosion resistance higher than that of the substrate and adhesion strength higher than that of plasma sprayed HA coating. The properties of the composite coatings were optimized by varying the CNT contents. The enhanced properties could be attributed to the use of nano-sized HA particles and CNTs. Compared with the monolithic HA coating, the CNT-reinforced HA coating markedly increased the coating hardness without deteriorating the corrosion resistance or adhesion strength.


Assuntos
Durapatita/química , Nanotubos de Carbono , Titânio/química , Ligas , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...