Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199042

RESUMO

Mechanical ventilation comprises a significant proportion of the total energy consumed in buildings. Sufficient natural ventilation in buildings is critical in reducing the energy consumption of mechanical ventilation while maintaining a comfortable indoor environment for occupants. In this paper, a new computerized framework based on building information modelling (BIM) and machine learning data-driven models is presented to analyze the optimum thermal comfort for indoor environments with the effect of natural ventilation. BIM provides geometrical and semantic information of the built environment, which are leveraged for setting the computational domain and boundary conditions of computational fluid dynamics (CFD) simulation. CFD modelling is conducted to obtain the flow field and temperature distribution, the results of which determine the thermal comfort index in a ventilated environment. BIM-CFD provides spatial data, boundary conditions, indoor environmental parameters, and the thermal comfort index for machine learning to construct robust data-driven models to empower the predictive analysis. In the neural network, the adjacency matrix in the field of graph theory is used to represent the spatial features (such as zone adjacency and connectivity) and incorporate the potential impact of interzonal airflow in thermal comfort analysis. The results of a case study indicate that utilizing natural ventilation can save cooling power consumption, but it may not be sufficient to fulfil all the thermal comfort criteria. The performance of natural ventilation at different seasons should be considered to identify the period when both air conditioning energy use and indoor thermal comfort are achieved. With the proposed new framework, thermal comfort prediction can be examined more efficiently to study different design options, operating scenarios, and changeover strategies between various ventilation modes, such as better spatial HVAC system designs, specific room-based real-time HVAC control, and other potential applications to maximize indoor thermal comfort.


Assuntos
Poluição do Ar em Ambientes Fechados , Ventilação , Ar Condicionado , Simulação por Computador , Estações do Ano , Temperatura
2.
IEE Proc Nanobiotechnol ; 151(2): 48-52, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16475842

RESUMO

A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance approximately 1-2 pAV and a cutoff frequency approximately 10(15) Hz.

3.
IEE Proc Nanobiotechnol ; 151(6): 193-6, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16475868

RESUMO

The current transport properties of DNA molecules are of considerable interest. The key reason for this appears to be linked to the universality of DNA molecules in living organisms, their self-assembly properties, and potential applications as nanoscale devices. The modelling of the I-V characteristics of a DNA molecule using equivalent circuits is reported. The advantages of the proposed model are that non-linear current behaviour can be included together with potential piece-wise solutions. The model includes the use of transistors to mimic current discontinuities at transition points. The simulated results closely resemble measured I-V curves and do not invoke resonant tunneling which contradicts observed temperature dependences. An equivalent-circuit model which includes the use of active devices is shown to be effective way to mimic non-linear current transport in biological molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...