Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(19): 194113, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800940

RESUMO

A new time-domain simulation protocol of two-dimensional electronic spectra with photocurrent detection is presented. Time-dependent density functional theory for open systems at finite temperature is applied to evaluate the photocurrent response to four laser pulses, and a non-perturbative phase-matching approach is implemented to extract the fourth-order photocurrent signal with a desired phase-matching condition. Simulations for an open three-level model indicates that transition dipoles interact resonantly with the incident pulses and that different sample-electrode couplings may be identified by appearance of different peaks/valleys in photocurrent spectra from different electrodes. Moreover, qualitative reproduction of experimental spectra of a PbS quantum dot photocell [Karki et al., Nat. Commun. 5(1), 5869 (2014)] reveals the stimulated electron dynamics.

2.
J Chem Phys ; 139(22): 224111, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24329060

RESUMO

Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...