Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Front Oncol ; 14: 1428182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015503

RESUMO

Introduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Results: Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Discussion: Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

3.
Int J Biol Macromol ; 273(Pt 1): 133005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866268

RESUMO

Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.


Assuntos
Quitosana , Dermatite Atópica , Nanopartículas , Tacrolimo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Tacrolimo/química , Tacrolimo/farmacologia , Tacrolimo/administração & dosagem , Tacrolimo/farmacocinética , Tacrolimo/uso terapêutico , Quitosana/química , Animais , Nanopartículas/química , Camundongos , Humanos , Portadores de Fármacos/química , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Administração Tópica , Absorção Cutânea/efeitos dos fármacos , Liberação Controlada de Fármacos , Modelos Animais de Doenças , Células HaCaT
4.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891932

RESUMO

4-O-Methyl-ascochlorin (MAC), a derivative of the prenyl-phenol antibiotic ascochlorin extracted from the fungus Ascochyta viciae, shows anticarcinogenic effects on various cancer cells. 5-Fluorouracil (5-FU) is used to treat colorectal cancer (CRC); however, its efficacy must be enhanced. In this study, we investigated the molecular mechanisms by which MAC acts synergistically with 5-FU to inhibit cell proliferation and induce apoptosis in CRC cells. MAC enhanced the cytotoxic effects of 5-FU by suppressing the Akt/mTOR/p70S6K and Wnt/ß-catenin signaling pathways. It also reduced the viability of 5-FU-resistant (5-FU-R) cells. Furthermore, expression of anti-apoptosis-related proteins and cancer stem-like cell (CSC) markers by 5-FU-R cells decreased in response to MAC. Similar to MAC, the knockdown of CTNNB1 induced apoptosis and reduced expression of mRNA encoding CRC markers in 5-FU-R cells. In summary, these results suggest that MAC and other ß-catenin modulators may be useful in overcoming the 5-FU resistance of CRC cells.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Sinergismo Farmacológico , Fluoruracila , Via de Sinalização Wnt , beta Catenina , Humanos , Fluoruracila/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746333

RESUMO

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

6.
Immune Netw ; 24(2): e7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725670

RESUMO

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

7.
Xenotransplantation ; 31(2): exen12855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602029

RESUMO

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Assuntos
Sialiltransferases , Transplante Heterólogo , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Humanos , Antígenos Virais de Tumores , Carboidratos , Mamíferos/metabolismo , Sialiltransferases/genética , Sialiltransferases/química , Sialiltransferases/metabolismo , Suínos
8.
J Dent Sci ; 19(2): 837-845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618133

RESUMO

Background/purpose: Apical root resection pattern affects the stress distribution behavior in the apical region of the resected tooth. The purpose of the study was to compare the biomechanical responses of resected teeth between endodontic microsurgery (horizontal resection) and targeted endodontic microsurgery (round resection). Materials and methods: Five different models were developed. The basic model without resection (NR) was regarded as the control model, and the others involved: horizontal resection without bone grafting (HN), horizontal resection with bone grafting (HG), round resection without bone grafting (RN), and round resection with bone grafting (RG) models. A static load of 100 N was applied to the buccal and palatal cusps of all the teeth in a 30° oblique direction. The maximum von-Mises stress and tooth displacement values were analyzed and compared. Results: Both the HN and RN models exhibited lower stress distribution values on bone compared with the NR (control) model. Regarding maximum stress distribution at the root apex, the stress value of the RN model was slightly higher compared to the HN model, whereas the RG model displayed a slightly lower stress value in comparison with the HG model. For maximum tooth displacement value, there were no significant differences between the HN and RN models, as well as the HG and RG models. Conclusion: The round resection pattern had comparable stress distribution behaviors at the root apex and tooth displacement values with the horizontal resection pattern. Targeted endodontic microsurgery might provide better biomechanical response of the resected tooth after root-end resection.

9.
Bioengineering (Basel) ; 11(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534546

RESUMO

Narrow-diameter implants (NDI) serve as a solution for treating limited bone volume in the anterior mandible. This study aimed to evaluate the one-year clinical outcomes of various NDIs in the mandibular incisor area after immediate loading in partially edentulous patients. This single-center, prospective, single-blinded, randomized controlled trial study included 21 patients, with 7 patients in each of the following groups: control (BLT NC SLActive®; Straumann), experimental group 1 (CMI IS-III Active® S-Narrow; Neobiotech), and experimental group 2 (CMI IS-III Active® Narrow; Neobiotech). Using full digital flow, two fixtures were placed in each patient and immediately provisionalized on the day of surgery. Evaluations encompassed periapical radiographs, implant stability quotient (ISQ), implant stability test (IST) readings, per-implant soft tissue health, patient satisfaction surveys, and esthetic score assessments. Definitive prostheses were delivered twelve weeks post-surgery (CRiS, number: KCT0007300). Following exclusions due to low stability values (n = 2), fixture failure (n = 5), and voluntary withdrawal (n = 1), the implant success rate for patients completing all clinical protocols stood at 100%. The resulting patient failure rates in the control, experimental group 1, and experimental group 2 were 50.0%, 42.9%, and 14.3%, respectively. There were no significant differences between the groups in terms of marginal bone loss, soft tissue health, patient satisfaction, and esthetic scores. Narrow implants showed superior clinical outcomes, followed by S-Narrow and Straumann implants. Calculated one-year survival rates at the implant level were 66.7% for the control group, 85.7% for experimental group 1, and 100% for experimental group 2. All three types of NDIs showed acceptable clinical and radiographic results during the year-long observation period.

10.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38545623

RESUMO

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

12.
Am J Cancer Res ; 14(2): 917-930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455410

RESUMO

Cyclophilin B (CypB), encoded by peptidylprolyl isomerase B (PPIB), is involved in cellular transcriptional regulation, immune responses, chemotaxis, and proliferation. Recent studies have shown that PPIB/CypB is associated with tumor progression and chemoresistance in various cancers. However, the clinicopathologic significance and mechanism of action of PPIB/CypB in non-small cell lung cancer (NSCLC) remain unclear. In this study, we used RNA in situ hybridization to examine PPIB expression in 431 NSCLC tissue microarrays consisting of 295 adenocarcinomas (ADCs) and 136 squamous cell carcinomas (SCCs). Additionally, Ki-67 expression was evaluated using immunohistochemistry. The role of PPIB/CypB was assessed in five human NSCLC cell lines. There was a significant correlation between PPIB/CypB expression and Ki-67 expression in ADC (Spearman correlation r=0.374, P<0.001) and a weak correlation in SCC (r=0.229, P=0.007). In ADCs, high PPIB expression (PPIBhigh) was associated with lymph node metastasis (P=0.023), advanced disease stage (P=0.014), disease recurrence (P=0.013), and patient mortality (P=0.015). Meanwhile, high Ki-67 expression (Ki-67high) was correlated with male sex, smoking history, high pT stage, lymph node metastasis, advanced stage, disease recurrence, and patient mortality in ADC (all P<0.001). However, there was no association between either marker or clinicopathological factors, except for old age and PPIBhigh (P=0.038) in SCC. Survival analyses revealed that the combined expression of PPIBhigh/Ki-67high was an independent prognosis factor for poor disease-free survival (HR 1.424, 95% CI 1.177-1.723, P<0.001) and overall survival (HR 1.266, 95% CI 1.036-1.548, P=0.021) in ADC, but not in SCC. Furthermore, PPIB/CypB promoted the proliferation, colony formation, and migration of NSCLC cells. We also observed the oncogenic properties of PPIB/CypB expression in human bronchial epithelial cells. In conclusion, PPIB/CypB contributes to tumor growth in NSCLC, and elevated PPIB/Ki-67 levels are linked to unfavorable survival, especially in ADC.

13.
Yonsei Med J ; 65(2): 70-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288647

RESUMO

PURPOSE: Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS: Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS: Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION: We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.


Assuntos
Transtorno do Espectro Autista , Citocinas , Criança , Masculino , Feminino , Humanos , Fator de Necrose Tumoral alfa , Inflamação , Interferons
14.
Toxicol Res ; 40(1): 179-188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223675

RESUMO

Arsenic (As) is a human carcinogen widely distributed in the environment. This study evaluated the association between the urinary As concentration and single nucleotide polymorphisms (SNPs) in Korean adults to determine the genetic factors related to As concentration. The study included 496 participants for the genome-wide association study (GWAS) and 1483 participants for the candidate gene approach study. Participants were 19 years and older. The concentrations of total As (Tot As) and total As metabolites (Tmet As, the sum of inorganic As and their metabolites; arsenite, arsenate, monomethylarsonic, and dimethylarsinic acid) in the urine were analyzed. The GWAS identified four SNPs (rs1432523, rs3776006, rs11171747, and rs807573) associated with urinary Tot As and four SNPs (rs117605537, rs3776006, rs11171747, and rs148103384) significantly associated with urinary Tmet As concentration (P < 1 × 10-4). The candidate gene study identified two SNPs (PRDX2 rs10427027 and GLRX rs3822751) in genes related to the reduction reaction associated with urinary Tot As and Tmet As. This study suggests that genetic factors may play a role in regulating As metabolism in the human body, affecting both exposure levels and its potential health risks in the general Korean population, even at low exposure levels. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00216-x.

15.
J Ginseng Res ; 48(1): 31-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223822

RESUMO

Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

16.
J Epidemiol ; 34(4): 180-186, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37331796

RESUMO

BACKGROUND: This study aimed to examine the association between risk of brain tumors and radiofrequency (RF) exposure from mobile phones among young people in Korea and Japan. METHODS: This case-control study of brain tumors in young people was conducted in Korea and Japan under the framework of the international MOBI-Kids study. We included 118 patients diagnosed with brain tumors between 2011 and 2015 and 236 matched appendicitis controls aged 10-24 years. Information on mobile phone use was collected through face-to-face interviews. A detailed RF exposure algorithm, based on the MOBI-Kids algorithm and modified to account for the specificities of Japanese and Korean phones and networks, was used to calculate the odds ratios (ORs) for total cumulative specific energy using conditional logistic regression. RESULTS: The adjusted ORs in the highest tertile of cumulative call time at 1 year before the reference date were 1.61 (95% confidence interval [CI], 0.72-3.60) for all brain tumors and 0.70 (95% CI, 0.16-3.03) for gliomas, with no indication of a trend with exposure. The ORs for glioma specifically, were below 1 in the lowest exposure category. CONCLUSION: This study provided no evidence of a causal association between mobile phone use and risk of brain tumors as a whole or of glioma specifically. Further research will be required to evaluate the impact of newer technologies of communication in the future.


Assuntos
Neoplasias Encefálicas , Telefone Celular , Glioma , Humanos , Adolescente , Estudos de Casos e Controles , Japão/epidemiologia , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Glioma/etiologia , Glioma/complicações , Inquéritos e Questionários , República da Coreia/epidemiologia
17.
J Control Release ; 366: 104-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128883

RESUMO

Although peptides notoriously have poor intrinsic pharmacokinetic properties, it is well-known that nanostructures with excellent pharmacokinetic properties can be designed. Noticing that peptide inhibitors are generally nonpolar, here, we consolidate the peptide inhibitor targeting intracellular protein-protein interactions (PPIs) as an integral part of biodegradable self-assembled depsipeptide nanostructures (SdPNs). Because the peptide inhibitor has the dual role of PPI inhibition and self-assembly in this design, problems associated with the poor pharmacokinetics of peptides and encapsulation/entrapment processes can be overcome. Optimized SdPNs displayed better tumor targeting and PPI inhibition properties than the comparable small molecule inhibitor in vivo. Kinetics of PPI inhibition for SdPNs were gradual and controllable in contrast to the rapid inhibition kinetics of the small molecule. Because SdPN is modular, any appropriate peptide inhibitor can be incorporated into the platform without concern for the poor pharmacokinetic properties of the peptide.


Assuntos
Depsipeptídeos , Nanoestruturas , Cinética
18.
J Proteome Res ; 23(1): 130-141, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104258

RESUMO

Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA. However, the underlying mechanism remains unclear. In this study, we investigated the target protein of Ertredin by combining drug affinity-responsive target stability (DARTS) assays with liquid chromatography-mass spectrometry using label-free Ertredin as a bait and HepG2 cell lysates as a proteome pool. NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12) was identified as an Ertredin-binding protein that was responsible for its biological activity. The interaction between NDUFA12 and Ertredin was validated by DARTS and cellular thermal shift assays. In addition, the genetic knockdown of the identified target, NDUFA12, was shown to suppress cell proliferation. NDUFA12 was identified as a biologically relevant target protein of Ertredin that is responsible for its antitumor activity, and these results provide insights into the role of NDUFA12 as a downstream factor in EGFRvIII mutants.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Proteômica/métodos , Proteínas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , NADPH Desidrogenase
19.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
20.
Biomed Pharmacother ; 168: 115776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924785

RESUMO

Persistent damage to liver cells leads to liver fibrosis, which is characterized by the accumulation of scar tissue in the liver, ultimately leading to cirrhosis and serious complications. Because it is difficult to reverse cirrhosis once it has progressed, the primary focus has been on preventing the progression of liver fibrosis. However, studies on therapeutic agents for liver fibrosis are still lacking. Here, we investigated that the natural dipeptide cyclic histidine-proline (CHP, also known as diketopiperazine) shows promising potential as a therapeutic agent in models of liver injury by inhibiting the progression of fibrosis through activation of the Nrf2 pathway. To elucidate the underlying biological mechanism of CHP, we used the Cellular Thermal Shift Assay (CETSA)-LC-MS/MS, a label-free compound-based target identification platform. Chloride intracellular channel protein 1 (CLIC1) was identified as a target whose thermal stability is increased by CHP treatment. We analyzed the direct interaction of CHP with CLIC1 which revealed a potential interaction between CHP and the E228 residue of CLIC1. Biological validation experiments showed that knockdown of CLIC1 mimicked the antioxidant effect of CHP. Further investigation using a mouse model of CCl4-induced liver fibrosis in wild-type and CLIC1 KO mice revealed the critical involvement of CLIC1 in mediating the effects of CHP. Taken together, our results provide evidence that CHP exerts its anti-fibrotic effects through specific binding to CLIC1. These insights into the mechanism of action of CHP may pave the way for the development of novel therapeutic strategies for fibrosis-related diseases.


Assuntos
Cloretos , Fator 2 Relacionado a NF-E2 , Humanos , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Cromatografia Líquida , Cirrose Hepática/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...