Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147707

RESUMO

The soiling of bedding on modern turkey farms combined with turkeys' reduced ability and opportunity to perch and roost at elevation, forces them to spend most, if not all, of their time in contact with their excreta. To determine turkeys' perspective on these conditions and the value they place on unsoiled bedding vs. soiled litter (collectively, substrates), we used twenty-four eleven-week-old turkey hens divided into six two-compartment pens. In the "home" compartment (H), we placed soiled wood shavings, while the "treatment" compartment (T) contained no substrate (NS), fresh pine and spruce wood shavings (FP), soiled pine and spruce wood shavings (SP), ammonia reductant-treated soiled pine and spruce wood shavings (TSP), or a feed treatment. One-way push-doors separated the two compartments. The door leading to T weighed an additional 0%, 20% or 40% of the turkeys' body weight while the door to H remained unweighted. All birds were exposed to each resource and door weight combination in a systematic order. We measured the turkeys' motivation based on the number of birds that pushed the maximum weight to access each resource, the amount of time spent in T, and the number of visits to T. Our findings show that turkeys worked harder to access feed compared to all the floor substrate treatments. Additionally, they were equally motivated to access all the substrate treatments.

2.
Sci Rep ; 10(1): 12978, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737381

RESUMO

The gut-microbiota-brain axis is implicated in the development of behavioural disorders in mammals. As such, its potential role in disruptive feather pecking (FP) in birds cannot be ignored. Birds with a higher propensity to perform FP have distinct microbiota profiles and feed transit times compared to non-pecking counterparts. Consequently, we hypothesize that the gut microbiota is intimately linked to FP and gut motility, which presents the possibility of using probiotics to control FP behaviour. In the present study, we aim to assess the relationship between cecal motility and the probiotic Lactobacillus rhamnosus in chickens classified as peckers (P, 13 birds) and non-peckers (NP, 17 birds). We show that cecal contractions were 68% less frequent and their amplitude increased by 58% in the presence of L. rhamnosus. Furthermore, the number of FP bouts performed by P birds was positively correlated with contraction velocity and amplitude. We present the first account of gut motility measurements in birds with distinct FP phenotypes. Importantly, the present work demonstrates the clear impact of a probiotic on cecal contractions. These findings lay the foundation for identifying biological differences between P and NP birds which will support the development of FP control strategies.


Assuntos
Ceco , Galinhas/fisiologia , Plumas , Microbioma Gastrointestinal/fisiologia , Motilidade Gastrointestinal , Lacticaseibacillus rhamnosus , Probióticos/farmacologia , Animais , Ceco/microbiologia , Ceco/fisiologia , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...