Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194987, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739218

RESUMO

The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.


Assuntos
Óxido Nítrico , PPAR alfa , Animais , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Regulação para Baixo , Adipócitos/metabolismo , Inflamação/genética , Obesidade
3.
Biosci Biotechnol Biochem ; 87(7): 747-757, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37024261

RESUMO

Soy isoflavones have been shown to have anti-inflammatory properties; however, the anti-inflammatory effects of isoflavone metabolites produced during soybean germination remain unclear. We found that the daidzein and genistein derivatives, 8-prenyl daidzein (8-PD) and 8-prenyl genistein (8-PG), demonstrated a more potent effect than daidzein and genistein on repressing inflammatory responses in macrophages. Although IkB protein levels were unaltered, 8-PD and 8-PG repressed nuclear factor kappa B (NF-κB) activation, which was associated with reduced ERK1/2, JNK, and p38 MAPK activation and suppressed mitogen- and stress-activated kinase 1 phosphorylation. Inflammatory responses induced by the medium containing hypertrophic adipocyte secretions were successfully suppressed by 8-PD and 8-PG treatment. In the ex vivo study, 8-PD and 8-PG significantly inhibited proinflammatory C-C motif chemokine ligand 2 (CCL2) secretion from the adipose tissues of mice fed a long-term high-fat diet. The data suggest that 8-PD and 8-PG could regulate macrophage activation under obesity conditions.


Assuntos
Genisteína , Isoflavonas , Camundongos , Animais , Genisteína/farmacologia , Genisteína/metabolismo , Glycine max/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia
4.
Methods Mol Biol ; 2662: 183-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076681

RESUMO

In the research setting, white adipose tissue (WAT) transplantation, also known as fat transplantation, is often used to understand the physiological function of adipocytes or associated stromal vascular cells such as macrophages in the context of local and systemic metabolism. The mouse is the most common animal model used where WAT from a donor is transferred either to a subcutaneous site of the same organism or to a subcutaneous region of a recipient. Here, we describe in detail the procedure for heterologous fat transplantation, and, given the need for survival surgery, peri- and postoperative care and subsequent histological confirmation of fat grafts will also be discussed.


Assuntos
Adipócitos , Tecido Adiposo Branco , Camundongos , Animais , Tecido Adiposo Branco/metabolismo , Adipócitos/metabolismo , Modelos Animais , Tecido Adiposo/irrigação sanguínea
5.
iScience ; 26(3): 106161, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895651

RESUMO

The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.

6.
Biosci Biotechnol Biochem ; 86(3): 380-389, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34935880

RESUMO

Uncoupling protein 1 (UCP1) in brown or beige adipocytes is a mitochondrial protein that is expected to enhance whole-body energy expenditure. For the high-throughput screening of UCP1 transcriptional activity regulator, we established a murine inguinal white adipose tissue-derived Ucp1-luciferase reporter preadipocyte line. Using this reporter preadipocyte line, 654 flavor compounds were screened, and a novel Ucp1 expression-inducing compound, 5-methylquinoxaline, was identified. Adipocytes treated with 5-methylquinoxaline showed increased Ucp1 mRNA expression levels and enhanced oxygen consumption. 5-Methylquinoxaline induced Ucp1 expression through peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and 5-methylquinoxaline-induced PGC1α activation seemed to be partially regulated by its phosphorylation or deacetylation. Thus, our Ucp1-luciferase reporter preadipocyte line is a useful tool for screening of Ucp1 inductive compounds.


Assuntos
Proteína Desacopladora 1
7.
Diabetes Metab Syndr Obes ; 13: 4353-4359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33235475

RESUMO

PURPOSE: Sodium-glucose co-transporter-2 (SGLT2) inhibitors have various pleiotropic effects, including body weight reduction, and therefore have the potential to be used in various applications. However, such effects have not been fully investigated; thus, non-clinical studies using animal models are needed. In animal experiments, SGLT2 inhibitors are usually administered by oral or dietary methods. However, the detailed characteristics of these dosing methods, especially to induce their pleiotropic effects, have not been reported. Therefore, we compared the preventive effects of canagliflozin, an SGLT2 inhibitor, on body weight gain following oral gavage and dietary administration methods in a mouse model of diet-induced obesity. METHODS: Canagliflozin was dosed by oral gavage or dietary administration for 9 weeks to 6-week-old C57BL/6N mice fed a high-fat diet, and parameters related to obesity were evaluated. RESULTS: The suppression of body weight gain, fat mass, and hepatic lipid content was observed following both dosing methods, whereas the effect on body weight tended to be stronger in the dietary administration group. In adipose tissue, fatty acid synthase expression was significantly decreased in the dietary administration group, and its expression was significantly correlated with fat mass. However, the expression of genes related to fatty acid oxidation was unchanged, indicating that the preventive effect on body weight gain was mediated mainly through the suppression of lipid synthesis rather than the promotion of lipid oxidation. CONCLUSION: Canagliflozin prevented body weight gain through the suppression of lipid synthesis via both dosing methods, although there were some differences in the efficacy. The findings of our study can help to identify new mechanisms of action of SGLT2 inhibitors and potential applications.

8.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641938

RESUMO

Endoplasmic reticulum (ER) homeostasis is critical in maintaining metabolic regulation. Once it is disrupted due to accumulated unfolded proteins, ER homeostasis is restored via activation of the unfolded protein response (UPR); hence, the UPR affects diverse physiological processes. However, how ER stress influences adipocyte functions is not well known. In this study, we investigated the effect of ER stress in thermogenic capacity of mice beige adipocytes. Here, we show that the expression of uncoupling protein 1 (Ucp1) involved in thermoregulation is severely suppressed under ER stress conditions (afflicted by tunicamycin) in inguinal white adipose tissue (IWAT) both in vitro and in vivo. Further investigation showed that extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were both activated after ER stress stimulation and regulated the mRNA levels of Ucp1 and peroxisome proliferator-activated receptor γ (Pparγ), which is known as a Ucp1 transcriptional activator, in vitro and ex vivo. We also found that Pparγ protein was significantly degraded, reducing its recruitment to the Ucp1 enhancer, thereby downregulating Ucp1 expression. Additionally, only JNK inhibition, but not ERK, rescued the Pparγ protein. These findings provide novel insights into the regulatory effect of ER stress on Ucp1 expression via Pparγ suppression in beige adipocytes.


Assuntos
Adipócitos Bege/metabolismo , Estresse do Retículo Endoplasmático , PPAR gama/genética , PPAR gama/metabolismo , Proteína Desacopladora 1/genética , Adipócitos Bege/citologia , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Ligação Proteica , Proteólise , Tunicamicina/farmacologia , Proteína Desacopladora 1/metabolismo , Resposta a Proteínas não Dobradas
9.
iScience ; 9: 175-191, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30396151

RESUMO

The mevalonate pathway is essential for the synthesis of isoprenoids and cholesterol. Adipose tissue is known as a major site for cholesterol storage; however, the role of the local mevalonate pathway and its synthesized isoprenoids remains unclear. In this study, adipose-specific mevalonate pathway-disrupted (aKO) mice were generated through knockout of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR). aKO mice showed serious lipodystrophy accompanied with glucose and lipid metabolic disorders and hepatomegaly. These metabolic variations in aKO mice were dramatically reversed after fat transplantation. In addition, HMGCR-disrupted adipocytes exhibited loss of lipid accumulation and an increase of cell death, which were ameliorated by the supplementation of mevalonate and geranylgeranyl pyrophosphate but not farnesyl pyrophosphate and squalene. Finally, we found that apoptosis may be involved in adipocyte death induced by HMGCR down-regulation. Our findings indicate that the mevalonate pathway is essential for adipocytes and further suggest that this pathway is an important regulator of adipocyte turnover.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28955455

RESUMO

BACKGROUND: Efficient gene editing is a critical tool for investigating molecular mechanisms of cellular processes and engineering organisms for numerous purposes ranging from biotechnology to medicine. Recently developed RNA-guided CRISPR/Cas9 technology has been used for efficient gene editing in various organisms, but has not been tested in a model filamentous fungus, Neurospora crassa. FINDINGS: In this report, we demonstrate efficient gene replacement in a model filamentous fungus, Neurospora crassa, with the CRISPR/Cas9 system. We utilize Cas9 endonuclease and single crRNA:tracrRNA chimeric guide RNA (gRNA) to: (1) replace the endogenous promoter of clr-2 with the ß-tubulin promoter, and (2) introduce a codon optimized fire fly luciferase under the control of the gsy-1 promoter at the csr-1 locus. CLR-2 is one of the core transcription factors that regulate the expression of cellulases, and GSY-1 regulates the conversion of glucose into glycogen. We show that the ß-tubulin promoter driven clr-2 strain shows increased expression of cellulases, and gsy-1-luciferase reporter strain can be easily screened with a bioluminescence assay. CONCLUSION: CRISPR/Cas9 system works efficiently in Neurospora crassa, which may be adapted to Neurospora natural isolates and other filamentous fungi. It will be beneficial for the filamentous fungal research community to take advantage of CRISPR/Cas9 tool kits that enable genetic perturbations including gene replacement and insertions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...