Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 44: 489-501, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31221584

RESUMO

BACKGROUND: A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. METHODS: The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. FINDINGS: CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. INTERPRETATION: CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.


Assuntos
Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Antígenos CD/genética , Antígenos de Neoplasias/genética , Metabolismo Energético/genética , Hipóxia/metabolismo , Paniculite/genética , Paniculite/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Matriz Extracelular , Feminino , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Paniculite/patologia , Transdução de Sinais
2.
Am J Physiol Endocrinol Metab ; 315(6): E1264-E1273, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300012

RESUMO

It was long thought that the only hormone capable of reversing the catabolic consequences of diabetes was insulin. However, various studies have demonstrated that the adipocyte-derived hormone leptin can robustly lower blood glucose levels in rodent models of insulin-deficient diabetes. In addition, it has been suggested that some of the metabolic manifestations of insulin-deficient diabetes are due to hypoleptinemia as opposed to hypoinsulinemia. Because insulin therapy increases leptin levels, we sought to investigate the contribution of leptin to the beneficial effects of insulin therapy. To do this, we tested insulin therapy in streptozotocin (STZ) diabetic mice that were either on an ob/ ob background or that were given a leptin antagonist to determine if blocking leptin action would blunt the glucose-lowering effects of insulin therapy. We found that STZ diabetic ob/ ob mice have a diminished blood glucose-lowering effect in response to insulin therapy compared with STZ diabetic controls and exhibited more severe weight loss post-STZ injection. In addition, STZ diabetic mice administered a leptin antagonist through daily injection or plasmid expression respond less robustly to insulin therapy as assessed by both fasting blood glucose levels and blood glucose levels during an oral glucose tolerance test. However, leptin antagonism did not prevent the insulin-induced reduction in ß-hydroxybutyrate and triglyceride levels. Therefore, we conclude that elevated leptin levels can contribute to the glucose-lowering effect of insulin therapy in insulin-deficient diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Leptina/metabolismo , Animais , Glicemia , Diabetes Mellitus Experimental/metabolismo , Teste de Tolerância a Glucose , Leptina/antagonistas & inibidores , Masculino , Camundongos
3.
Mol Metab ; 5(8): 716-724, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27656409

RESUMO

OBJECTIVE: Leptin reverses hyperglycemia in rodent models of type 1 diabetes (T1D). Direct application of leptin to the brain can lower blood glucose in diabetic rodents, and can activate autonomic efferents and non-shivering thermogenesis in brown adipose tissue (BAT). We investigated whether leptin reverses hyperglycemia through a mechanism that requires autonomic innervation, or uncoupling protein 1 (UCP1)-mediated thermogenesis. METHODS: To examine the role of parasympathetic and sympathetic efferents in the glucose-lowering action of leptin, mice with a subdiaphragmatic vagotomy or 6-hydroxydopamine induced chemical sympathectomy were injected with streptozotocin (STZ) to induce hyperglycemia, and subsequently leptin treated. To test whether the glucose-lowering action of leptin requires activation of UCP1-mediated thermogenesis in BAT, we administered leptin in STZ-diabetic Ucp1 knockout (Ucp1 (-/-)) mice and wildtype controls. RESULTS: Leptin ameliorated STZ-induced hyperglycemia in both intact and vagotomised mice. Similarly, mice with a partial chemical sympathectomy did not have an attenuated response to leptin-mediated glucose lowering relative to sham controls, and showed intact leptin-induced Ucp1 expression in BAT. Although leptin activated BAT thermogenesis in STZ-diabetic mice, the anti-diabetic effect of leptin was not blunted in Ucp1 (-/-) mice. CONCLUSIONS: These results suggest that leptin lowers blood glucose in insulin-deficient diabetes through a manner that does not require parasympathetic or sympathetic innervation, and thus imply that leptin lowers blood glucose through an alternative CNS-mediated mechanism or redundant target tissues. Furthermore, we conclude that the glucose lowering action of leptin is independent of UCP1-dependent thermogenesis.

4.
Cell Rep ; 13(8): 1521-7, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26586424

RESUMO

Fibroblast growth factor 21 (FGF21)-mediated weight loss and improvements in glucose metabolism correlate with increased uncoupling protein 1 (Ucp1) levels in adipose tissues, suggesting that UCP1-dependent thermogenesis may drive FGF21 action. It was reported that FGF21 is equally effective at reducing body weight and improving glucose homeostasis without UCP1. We find while FGF21 can lower body weight in both wild-type and Ucp1 knockout mice, rapid clearance of glucose by FGF21 is defective in the absence of UCP1. Furthermore, in obese wild-type mice there is a fall in brown adipose tissue (BAT) temperature during glucose excursion, and FGF21 improves glucose clearance while preventing the fall in BAT temperature. In Ucp1 knockout mice, the fall in BAT temperature during glucose excursion and FGF21-mediated changes in BAT temperature are lost. We conclude FGF21-mediated improvements in clearance of a glucose challenge require UCP1 and evoke UCP1-dependent thermogenesis as a method to increase glucose disposal.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1
5.
Diabetologia ; 58(5): 1100-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25715699

RESUMO

AIMS/HYPOTHESIS: Leptin has profound glucose-lowering effects in rodent models of type 1 diabetes, and is currently being tested clinically to treat this disease. In addition to reversing hyperglycaemia, leptin therapy corrects multiple lipid, energy and neuroendocrine imbalances in rodent models of type 1 diabetes, yet the precise mechanism has not been fully defined. Thus, we performed metabolic analyses to delineate the downstream metabolic pathway mediating leptin-induced glucose lowering in diabetic mice. METHODS: Mice were injected with streptozotocin (STZ) to induce insulin-deficient diabetes, and were subsequently treated with 20 µg/day recombinant murine leptin or vehicle for 5 to 14 days. Energy-yielding substrates were measured in the liver and plasma, and endogenous glucose production was assessed by tolerance to extended fasting. RESULTS: STZ-leptin-treated mice developed severe hypoketotic hypoglycaemia during prolonged fasting, indicative of suppressed endogenous ketone and glucose production. STZ-leptin mice displayed normal gluconeogenic and glycogenolytic capacity, but had depleted circulating glycerol and NEFA. The depletion of glycerol and NEFA correlated tightly with the kinetics of glucose lowering in response to chronic leptin administration, and was not mimicked by single leptin injection. Administration of glycerol acutely reversed fasting-induced hypoglycaemia in leptin-treated mice. CONCLUSIONS/INTERPRETATION: The findings of this study suggest that the diminution of circulating glycerol reduces endogenous glucose production, contributing to severe fasting-induced hypoglycaemia in leptin-treated rodent models of type 1 diabetes, and support that depletion of glycerol contributes to the glucose-lowering action of leptin.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glicerol/sangue , Hipoglicemia/metabolismo , Leptina/uso terapêutico , Fígado/metabolismo , Animais , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Diabetes Mellitus Experimental/metabolismo , Glicerol/farmacologia , Insulina/sangue , Leptina/farmacologia , Fígado/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...