Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6528-6535, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432884

RESUMO

Rapid advances in flexible optoelectronic devices necessitate the concomitant development of high-performance, cost-efficient, and flexible transparent conductive electrodes (TCEs). This Letter reports an abrupt enhancement in the optoelectronic characteristics of ultrathin Cu-layer-based TCEs via Ar+-mediated modulation of the chemical and physical states of a ZnO support surface. This approach strongly regulates the growth mode for the subsequently deposited Cu layer, in addition to marked alteration to the ZnO/Cu interface states, resulting in exceptional TCE performance in the form of ZnO/Cu/ZnO TCEs. The resultant Haacke figure of merit (T10/Rs) of 0.063 Ω-1, 53% greater than that of the unaltered, otherwise identical structure, corresponds to a record-high value for Cu-layer-based TCEs. Moreover, the enhanced TCE performance in this approach is shown to be highly sustainable under severe simultaneous loadings of electrical, thermal, and mechanical stresses.

2.
Opt Express ; 27(8): 11748-11765, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053016

RESUMO

Add-drop filters (ADFs) are an essential component in optical interconnection using dense wavelength-division multiplexing. Silicon photonic ADFs based on contra-directional coupling have been well developed, but those based on grating-assisted co-directional coupling (GACC) have never been studied. This paper reports an ADF based on GACC in a vertical hybrid structure (VHS). which consists of two width-modulated silicon strip waveguides with a large lateral gap and a wide silicon nitride strip waveguide above them. The VHS makes it possible for the ADF to have a narrow 3-dB bandwidth as well as a short grating length. An efficient analysis method for design is explained, and the ADF is designed. Theoretical investigation of the ADF demonstrates that the ADF has a 3-dB bandwidth of 1.16 nm and a grating length of 1.13 mm, which are similar to those of ADFs based on contra-directional coupling. As an application, the ADF is used for a nonvolatile switchable ADF by adding an optical phase change material strip above the silicon nitride waveguide. The nonvolatile switchable ADF is shown to have an extinction ratio larger than 30 dB. The investigated ADF requires neither waveguides in close proximity nor grating teeth with dimensions close to the resolution of deep UV lithography. In this regard, it has the advantage of ease of fabrication as compared to ADFs based on contra-directional coupling. Therefore, the ADF is expected to play a key role in optical interconnection using dense wavelength-division multiplexing, prevailing over ADFs based on contra-directional coupling.

3.
Nanoscale ; 9(44): 17429-17438, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29104985

RESUMO

This work reports a mid-infrared modulator based on a hybrid plasmonic waveguide with graphene on a grating in its slot region. The modulator utilizes a graphene plasmon for electro-optic tuning in a more practical and effective way than graphene-plasmon-based waveguide devices studied up to now. The hybrid plasmonic waveguide can be easily and efficiently integrated with input and output photonic waveguides. It supports a hybrid plasmonic waveguide mode and a graphene-plasmon-based waveguide mode. Grating-assisted coupling of the former to the latter in it is demonstrated to work successfully even though the two modes have significantly different propagation constants and losses. Theoretical investigation of the modulator shows that the coupling via the grating of length 5.92 µm generates a deep rejection band at a wavelength of 8.014 µm in the transmission spectrum of the output photonic waveguide of the modulator. With the graphene chemical potential tuned between 0.6 eV and 0.65 eV, the transmission at the wavelength is modulated between -27 dB and -1.8 dB. The subwavelength modulator, which may have a large bandwidth and small energy consumption, is expected to play a key role in free-space communications and sensing requiring mid-infrared integrated photonics.

4.
Sci Rep ; 6: 23149, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26979929

RESUMO

Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 µm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage.

6.
Opt Lett ; 39(3): 715-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487907

RESUMO

We theoretically and experimentally investigate 90° submicrometer radius bends (SRB) of metal-insulator-silicon-insulator-metal (MISIM) waveguides that are plasmonic waveguides fabricated with standard CMOS technology. We focus on the bends of MISIM waveguides with a wide (e.g., 160-220 nm) silicon line. This study shows that the bend efficiently turns the direction of the MISIM waveguide by 90° if its radius is about 0.7 µm. Moreover, we discuss the fact that the bend may be superior to a SRB of a silicon photonic waveguide when it is used to implement a ring resonator with a high quality factor and small volume.

7.
Opt Express ; 20(20): 21875-87, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037337

RESUMO

We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/µm. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate ~30-nm-wide nanochannels which may be filled with functional material.


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
8.
Opt Express ; 19(9): 8379-93, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643089

RESUMO

Metal-insulator-silicon-insulator-metal (MISIM) waveguides are proposed and investigated theoretically. They are hybrid plasmonic waveguides, and light is highly confined to the insulator between the metal and silicon. As compared to previous ones, they are advantageous since they may be realized in a simple way by using current standard CMOS technology and their insulator is easily replaceable without affecting the metal and silicon. First, their structure and fabrication process are explained, both of which are compatible with standard CMOS technology. Then, the characteristics of the single MISIM waveguide whose insulator has its original or an adjusted refractive index are analyzed. The analysis demonstrates that its characteristics are comparable to those of previous hybrid plasmonic waveguides and that they are very effectively tuned by changing the refractive index of the insulator. Finally, the characteristics of the two coupled MISIM waveguides are analyzed. Through the analysis, it is obtained how close or far apart they are for efficient power transfer or low crosstalk. MISIM-waveguide-based devices may play an important role in connecting Si-based photonic and electronic circuits.


Assuntos
Metais/química , Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Transistores Eletrônicos , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Opt Lett ; 35(22): 3835-7, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21082013

RESUMO

This Letter theoretically proposes and investigates an integrated plasmonic sensor that is based on a grating-assisted coupling between a surface plasmon polariton (SPP) and a dielectric waveguide (DW) mode. It consists of a glass slide with a gold film for the propagation of an SPP and a separate DW with a long-period grating. For sensing, the two parts are temporarily combined. After sensing, the former is replaceable, and so the sensor has disposability. The design procedure and analysis method for the sensor are explained. The designed sensor is shown to be very compact. Its characteristics of sensing a change of the refractive index of liquid are analyzed and discussed.


Assuntos
Equipamentos Descartáveis , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Ouro , Refratometria
10.
Opt Express ; 16(13): 9372-7, 2008 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-18575501

RESUMO

We propose and investigate experimentally a micro-ring-resonator-based sensor with which we can measure both the concentration and temperature of glucose solution. It consists of two micro-ring resonators consecutively coupled to a bus waveguide by the overlap between them. The resonance wavelengths of the two resonators change similarly with the temperature but differently with the concentration. For that purpose, the core of just one micro-ring resonator is exposed directly to the solution. Using polymers, conventional processes, and a polymer lift-off process, we implement the sensor. Through the measurement of the fabricated sensor, we obtain its characteristics of measuring the temperature and concentration.


Assuntos
Glucose/análise , Glucose/química , Modelos Teóricos , Nefelometria e Turbidimetria/instrumentação , Refratometria/instrumentação , Termografia/instrumentação , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nefelometria e Turbidimetria/métodos , Espalhamento de Radiação
11.
Opt Lett ; 29(22): 2605-7, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15552659

RESUMO

We demonstrate an in-line polarization controller based on a hollow optical fiber filled with a nematic liquid crystal by fabricating thin-film electrodes on the cladding of a fiber. The polarization controller consists of three control sections with fixed optic axes, which operate as phase retarders. The phase retardation in each section is controlled by the magnitude of the applied electric field. The full wave retardation voltage of the polarization controller is approximately 85 V.

12.
Opt Express ; 11(18): 2211-6, 2003 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19466110

RESUMO

We demonstrate the feasibility of the process for fabricating a single-mode waveguide and a large-core multimode waveguide aligned vertically on the same substrate. Using this process, we propose and demonstrate a filter that drops optical signal propagating in a single-mode waveguide to a multimode waveguide in the specific wavelength interval by a long-period grating. We use perfluorocyclobutane and benzocyclobutane for the cladding and core of the single-mode waveguide, respectively. The large core of the multimode waveguide is made of Norland Optical Adhesive 61. For the grating period of 315.9 um, the fabricated filter has the center wavelength of 1537.7 nm, at which the maximum attenuation is 17.8 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...