Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trials ; 23(1): 430, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606883

RESUMO

BACKGROUND: Despite advances in surgical and postoperative care, myocardial injury or infarction (MI) is still a common complication in patients undergoing coronary artery bypass surgery (CABG). Several studies that aimed to reduce postoperative myocardial injury, including those investigating statin loading, have been conducted but did not indicate any clear benefits. Evolocumab, a PCSK9 inhibitor, has been reported to lower lipids and prevent ischemic events in various medical conditions. However, the effect of evolocumab in cardiovascular surgery has not been evaluated. The objective of this trial is to evaluate the cardioprotective effects of evolocumab in elective CABG patients with multivessel coronary artery disease. METHODS: EVOCABG is a prospective, randomized, open, controlled, multicenter, superiority, phase III clinical trial. Patients with multivessel coronary artery disease without initial cardiac enzyme elevation will be recruited (n=100). Participants will be randomly allocated into two groups: a test group (evolocumab (140mg) administration once within 72 h before CABG) and a control group (no administration). The primary outcome is the change in peak levels of serum cardiac marker (troponin-I) within 3 days of CABG surgery compared to the baseline. Secondary outcomes include post-operative clinical events including death, myocardial infarction, heart failure, stroke, and atrial fibrillation. DISCUSSION: This trial is the first prospective randomized controlled trial to demonstrate the efficacy of evolocumab in reducing ischemic-reperfusion injury in patients undergoing CABG. This trial will provide the first high-quality evidence for preoperative use of evolocumab in mitigating or preventing ischemic-reperfusion-related myocardial injury during the surgery. TRIAL REGISTRATION: Clinical Research Information Service (CRIS) of the Republic of Korea KCT0005577 . Registered on 4 November 2020.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Anticorpos Monoclonais Humanizados , Ensaios Clínicos Fase III como Assunto , Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/métodos , Doença da Artéria Coronariana/cirurgia , Humanos , Estudos Multicêntricos como Assunto , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/prevenção & controle , Pró-Proteína Convertase 9 , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
2.
J Nanosci Nanotechnol ; 15(10): 8353-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726516

RESUMO

Various metal-salen catalysts were prepared for use in the direct synthesis of diphenyl carbonate (DPC) from phenol and carbon dioxide. We found that metal-salen complexes containing titanium as central metal species retained suitable Lewis acid property for the reaction. It was revealed that the catalytic activity of Ti-salen complexes could be controlled by introducing appropriate substituents into salen ligand. Insertion of phosphonium salts into para-position of aromatic aldehyde of salen ligand enhanced solubility of the catalyst in the methanol-phenol solution, and tert-butyl substituent in the salen ligand induced selective formation of DPC due to steric effect. In addition, introduction of various bridging groups into salen ligand caused change in electronic property of central metal atom. Among the catalysts tested, Ti-(t-butyl)salphen(PPh3)Cl showed the best catalytic performance at 100 °C and 60 bar. The catalytic system utilizing Ti-(t-butyl)salphen(PPh3)Cl catalyst was then optimized by conducting the reaction at various reaction temperatures and pressures.

3.
Pacing Clin Electrophysiol ; 35(3): e59-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20883511

RESUMO

We describe a patient with gastroparesis after radiofrequency catheter ablation (RFCA) as a result of vagus nerve injury. A 42-year-old man underwent redo-RFCA due to recurrent drug-resistant symptomatic atrial fibrillation. The patient complained of indigestion and early satiety 2 weeks after the second procedure. There was also weight loss of approximately 5 kg for 2 months. He underwent endoscopy during which food material was noticed. In the upper gastrointestinal series, most contrast material still remained in the stomach on the 2-hour delayed images, suggesting delayed gastric emptying time.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Dispepsia/etiologia , Gastroparesia/etiologia , Traumatismos do Nervo Vago/complicações , Redução de Peso , Adulto , Meios de Contraste , Dispepsia/diagnóstico por imagem , Gastroparesia/diagnóstico por imagem , Humanos , Masculino , Radiografia , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Acc Chem Res ; 38(3): 183-90, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15766237

RESUMO

An account of recent studies of the chemistry of new disulfido metal carbonyl complexes containing manganese is presented. The coordination of the disulfido ligands, the nature of reactions at the manganese atom(s) and the nature of insertion reactions at the disulfido ligands are discussed.

5.
Inorg Chem ; 42(20): 6175-82, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14514293

RESUMO

Reaction of CpMoMn(CO)(8) with elemental selenium and Me(3)NO in the absence of light yielded the diselenido complex CpMoMn(CO)(5)(mu-Se(2)), 2. Compound 2 contains a bridging diselenido ligand lying perpendicular to the Mo-Mn bond, Mo-Mn = 2.8421(10) A. In the presence of room light, the reaction yielded the tetranuclear metal complex Cp(2)Mo(2)Mn(2)(CO)(7)(mu(3)-Se)(4), 3 (36% yield), and 2 (7% yield). Compound 2 reacted with ethylene to yield the ethanediselenato complex CpMoMn(CO)(5)(mu-SeCH(2)CH(2)Se), 4, by insertion of ethylene into the Se-Se bond. Compound 2 also reacted with (PPh(3))(2)Pt(PhC(2)Ph) and CpCo(CO)(2) to yield the complexes CpMoMnPt(PPh(3))(2)(CO)(5)(mu(3)-Se)(2), 5, and Cp(2)CoMoMn(CO)(5)(mu(3)-Se)(2), 6, respectively, by insertion of the metal groupings CpCo and Pt(PPh(3))(2) into the Se-Se bond of 2. The oxo compound Cp(2)CoMo(O)Mn(CO)(5)(mu(3)-Se)(2), 7, was obtained from 6 by decarbonylation at molybdenum by using Me(3)NO. The molecular structures of the complexes 2-7 were established by single-crystal X-ray diffraction analyses.

6.
Inorg Chem ; 42(10): 3356-65, 2003 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-12739978

RESUMO

The reaction of Mn(2)(CO)(7)(mu-S2) (1) with [CpMo(CO)(3)](2) (Cp = C(5)H(5)) and [Cp*Mo(CO)(3)](2) (Cp* = C(5)(CH(3))(5)) yielded the new mixed-metal disulfide complexes CpMoMn(CO)(5)(mu-S2) (2) and Cp*MoMn(CO)(5)(mu-S2) (3) by a metal-metal exchange reaction. Compounds 2 and 3 both contain a bridging disulfido ligand lying perpendicular to the Mo-Mn bond. The bond distances are Mo-Mn = 2.8421(10) and 2.8914(5) A and S-S = 2.042(2) and 1.9973(10) A for 2 and 3, respectively. A tetranuclear metal side product CpMoMn(3)(CO)(13)(mu3-S)(mu4-S) (4) was also isolated from the reaction of 1 with [CpMo(CO)(3)](2). Compounds 2 and 3 react with CO to yield the dithiocarbonato complexes CpMoMn(CO)(5)[mu-SC(=O)S] (5) and Cp*MoMn(CO)(5)[mu-SC(=O)S] (6) by insertion of CO into the S-S bond. Similarly, tert-butylisocyanide was inserted into the S-S bond of 2 and 3 to yield the complexes CpMoMn(CO)(5)[mu-S(C=NBu(t))S] (7) and Cp*MoMn(CO)(5)[mu-S(C=NBu(t))S] (8), respectively. Ethylene and dimethylacetylene dicarboxylate also inserted into the S-S bond of 2 and 3 at room temperature to yield the ethanedithiolato ligand bridged complexes CpMoMn(CO)(5)(mu-SCH(2)CH(2)S) (9), Cp*MoMn(CO)(5)(mu-SCH(2)CH(2)S) (10), CpMoMn(CO)(5)[mu-SC(CO(2)Me)=C(CO(2)Me)S] (11), and Cp*MoMn(CO)(5)[mu-SC(CO(2)Me)=C(CO(2)Me)S] (12). Allene was found to insert into the S-S bond of 2 by using one of its two double bonds to yield the complex CpMoMn(CO)(5)[mu-SCH(2)C(=CH(2))S] (13). The molecular structures of the new complexes 2-7 and 9-13 were established by single-crystal X-ray diffraction analyses.

7.
Inorg Chem ; 41(24): 6281-90, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12444771

RESUMO

The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.

8.
Inorg Chem ; 41(21): 5525-9, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12377049

RESUMO

The reaction of Mn(2)(CO)(7)(mu-S(2)) (2) with SMe(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SMe(2)) (3) and Mn(4)(CO)(14)(SMe(2))(mu(3)-S(2))(mu(4)-S(2)) (4) in 18 and 41% yields, respectively. The reaction of 2 with the cyclic thioether thietane SCH(2)CH(2)CH(2) yielded the new complexes Mn(2)(CO)(6)(mu-S(2))(mu-SCH(2)CH(2)CH(2)) (5) and Mn(4)(CO)(14)(SCH(2)CH(2)CH(2))(mu(3)-S(2))(mu(4)-S(2)) (6) in 12 and 52% yields, respectively, and the reaction of 2 with 1,4,9-trithiacyclododecane (12S3) yielded Mn(2)(CO)(6)(mu-12S3)(mu-S(2)) (7) and Mn(4)(CO)(14)(12S3)(mu(3)-S(2))(mu(4)-S(2)) (8) in 8 and 24% yields, respectively. Compounds 3 and 5-7 were characterized crystallographically. Compounds 3, 5, and 7 have similar structures in which the thioether ligand has replaced the bridging carbonyl ligand of 2 and its sulfur atom has been inserted into the manganese-manganese bond. The two manganese atoms are not mutually bonded, and two Mn(CO)(3) groups are held together through the bridging disulfido ligand and the bridging sulfur atom of the thioether ligand. Compound 6 contains a Mn(4)(mu(3)-S(2))(mu(4)-S(2)) moiety without metal-metal bonds. On the basis of spectroscopic data, compounds 4 and 8 are believed to have similar structures.

9.
Inorg Chem ; 41(6): 1658-61, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11896737

RESUMO

The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...