Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurobiol ; 33(2): 77-98, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38724478

RESUMO

The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.

2.
ACS Nano ; 18(6): 4911-4921, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289164

RESUMO

When navigated by the available energy of a system, often provided in the form of heat, physical processes or chemical reactions fleet on a free-energy landscape, thus changing the structure. In in situ transmission electron microscopy (TEM), where material structures are measured and manipulated inside the microscope while being subjected to external stimuli such as electrical fields, laser irradiation, or mechanical stress, it is necessary to precisely determine the local temperature of the specimen to provide a comprehensive understanding of material behavior and to establish the relationship among energy, structure, and properties at the nanoscale. Here, we propose using cathodoluminescence (CL) spectroscopy in TEM for in situ measurement of the local temperature. Gadolinium oxide particles doped with emissive europium ions present an opportunity to utilize them as a temperature probe in CL measurements via a ratiometric approach. We show the thermometric performance of the probe and demonstrate a precision of ±5 K in the temperature range from 113 to 323 K with the spatial resolution limited by the size of the particles, which surpasses other methods for temperature determination. With the CL-based thermometry, we further demonstrate measuring local temperature under laser irradiation.

3.
ACS Appl Mater Interfaces ; 16(2): 2341-2350, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178695

RESUMO

Harvesting full-spectrum solar energy is a critical issue for developing high-performance photocatalysts. Here, we report a hierarchical heteronanostructure consisting of upconverting, plasmonic, and semiconducting materials as a solar-to-chemical energy conversion platform that can exploit a wide range of sunlight (from ultraviolet (UV) to near-infrared). Lanthanide-doped NaYF4 nanorod-spherical Au nanocrystals-TiO2 ternary hybrid nanostructures with a well-controlled configuration and intimate contact between the constituent materials could be synthesized by a wet-chemical method. Notably, the prepared ternary hybrids exhibited high photocatalytic activity for the H2 evolution reaction under simulated solar and near-infrared light irradiation due to their broadband photoresponsivity and strong optical interaction between the constituents. Through systematic studies on the mechanism of energy transfer during the photocatalysis of the ternary hybrids, we revealed that upconverted photon energy from the upconversion domain transfers to the Au and TiO2 domains primarily through the Förster resonance energy transfer process, resulting in enhanced photocatalysis.

4.
Proc Natl Acad Sci U S A ; 121(3): e2314797121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194452

RESUMO

Assessing the ergodicity of graphene liquid cell electron microscope measurements, we report that loop states of circular DNA interconvert reversibly and that loop numbers follow the Boltzmann distribution expected for this molecule in bulk solution, provided that the electron dose is low (80-keV electron energy and electron dose rate 1-20 e- Å-2 s-1). This imaging technique appears to act as a "slow motion" camera that reveals equilibrated distributions by imaging the time average of a few molecules without the need to image a spatial ensemble.


Assuntos
Elétrons , Grafite , Microscopia Eletrônica , Movimento (Física) , Conformação de Ácido Nucleico
5.
Chem Sci ; 14(27): 7553-7558, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449064

RESUMO

In photocatalysis, metal-semiconductor hybrid structures have been proposed for ideal photocatalytic systems. In this study, we investigate the effect of morphology and surface nature of Pt cocatalysts on photocatalytic hydrogen evolution activity in Pt-tipped CdSe nanorods. Three distinct morphologies of Pt cocatalysts were synthesized and employed as visible light photocatalysts. The rough tips exhibit the highest activity, followed by the round and cubic tips. Kinetic investigations using transient absorption spectroscopy reveal that the cubic tips exhibit lower charge-separated states feasible for reacting with water and water reduction rates due to their defectless surface facets. In contrast, the rough tips show a similar charge-separation value but a two-fold higher surface reaction rate than the round tips, resulting in a significant enhancement of hydrogen evolution. These findings highlight the importance of rational design on metal cocatalysts in addition to the main semiconductor bodies for maximizing photocatalytic activities.

6.
Nano Lett ; 23(8): 3645-3652, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36876977

RESUMO

The shaping of matter into desired nanometric structures with on-demand functionalities can enhance the miniaturization of devices in nanotechnology. Herein, strong light-matter interaction was used as an optical lithographic tool to tailor two-dimensional (2D) matter into nanoscale architectures. We transformed 2D black phosphorus (BP) into ultrafine, well-defined, beyond-diffraction-limit nanostructures of ten times smaller size and a hundred times smaller spacing than the incident, femtosecond-pulsed light wavelength. Consequently, nanoribbons and nanocubes/cuboids scaling tens of nanometers were formed by the structured ablation along the extremely confined periodic light fields originating from modulation instability, the tailoring process of which was visualized in real time via light-coupled in situ transmission electron microscopy. The current findings on the controllable nanoscale shaping of BP will enable exotic physical phenomena and further advance the optical lithographic techniques for 2D materials.

7.
Small ; 19(17): e2206668, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703517

RESUMO

Low-dimensional Cu(I)-based metal halide materials are gaining attention due to their low toxicity, high stability and unique luminescence mechanism, which is mediated by self-trapped excitons (STEs). Among them, Cs5 Cu3 Cl6 I2 , which emits blue light, is a promising candidate for applications as a next-generation blue-emitting material. In this article, an optimized colloidal process to synthesize uniform Cs5 Cu3 Cl6 I2 nanocrystals (NCs) with a superior quantum yield (QY) is proposed. In addition, precise control of the synthesis parameters, enabling anisotropic growth and emission wavelength shifting is demonstrated. The synthesized Cs5 Cu3 Cl6 I2 NCs have an excellent photoluminescence (PL) retention rate, even at high temperature, and exhibit high stability over multiple heating-cooling cycles under ambient conditions. Moreover, under 850-nm femtosecond laser irradiation, the NCs exhibit three-photon absorption (3PA)-induced PL, highlighting the possibility of utilizing their nonlinear optical properties. Such thermally stable and highly luminescent Cs5 Cu3 Cl6 I2 NCs with nonlinear optical properties overcome the limitations of conventional blue-emitting nanomaterials. These findings provide insights into the mechanism of the colloidal synthesis of Cs5 Cu3 Cl6 I2 NCs and a foundation for further research.

8.
Sci Adv ; 9(4): eadd5375, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706188

RESUMO

Using an energy filter in transmission electron microscopy has enabled elemental mapping at the atomic scale and improved the precision of structural determination by gating inelastic and elastic imaging electrons, respectively. Here, we use an energy filter in ultrafast electron microscopy to enhance the temporal resolution toward the domain of atomic motion. Visualizing transient structures with femtosecond temporal precision was achieved by selecting imaging electrons in a narrow energy distribution from dense chirped photoelectron packets with broad longitudinal momentum distributions and thus typically exhibiting picosecond durations. In this study, the heterogeneous ultrafast phase transitions of vanadium dioxide (VO2) nanoparticles, a representative strongly correlated system, were filmed and attributed to the emergence of a transient, low-symmetry metallic phase caused by different local strains. Our approach enables electron microscopy to access the time scale of elementary nuclear motion to visualize the onset of the structural dynamics of matter at the nanoscale.

9.
Small ; 19(10): e2206547, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541782

RESUMO

Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.

10.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893788

RESUMO

The key to current Alzheimer's disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-ß (Aß), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients' bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.

11.
Sci Rep ; 12(1): 11295, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789195

RESUMO

Base treatment and metal doping were evaluated as means of enhancing the photocatalytic activity of ZrO2 nanoparticles (NPs) via the generation of oxygen vacancies (OvS), and the sites responsible for this enhancement were identified and characterized by spectroscopic and microscopic techniques. We confirmed that OvS produced by base treatment engaged in photocatalytic activity for organic pollutant degradation, whereas surface defects introduced by Cr-ion doping engaged in oxidative catalysis of molecules. Moreover, we verified that base-treated ZrO2 NPs outperformed their Cr-ion doped counterparts as photocatalysts using in situ X-ray photoelectron spectroscopy and scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS). Thus, our study provides valuable information on the origin of the enhanced photocatalytic activity of modified ZrO2 NPs and demonstrates the practicality of in situ spectroscopy and STEM-EELS for the evaluation of highly efficient metal oxide photocatalysts.

12.
J Phys Chem B ; 126(6): 1275-1283, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35119852

RESUMO

The excited-state proton transfer (ESPT) of a cationic superphotoacid, N-methyl-7-hydroxyquinolium, was studied within the water pool of an anionic aerosol-OT (AOT), bis(2-ethylhexyl) sulfosuccinate, reverse micelle (RM). Previously, we had found that the cationic photoacid residing at the anionic AOT interface was conducive to ESPT to the bound water having concentric heterogeneity on the time scale of hundreds of picoseconds to nanoseconds. In our present study, on the time scale of hundreds of femtoseconds to a few tens of picoseconds, the photoacid underwent an ultrafast ESPT influenced by mobile water constituting the core of the RM. The two subpopulations of the core water molecules that determine the ultrafast biphasic deprotonation of the photoacid on time scales differing by an order of magnitude were identified. The core water molecules solvating the counteranion of the photoacid showed a higher basicity than typical water clusters in bulk resulting in ESPT on a subpicosecond time scale. Bare water clusters sensed by the photoacid showed a slower ESPT, over several picoseconds, as typically limited by the rotational motion of water molecules for similar types of the photoacid.


Assuntos
Prótons , Água , Cátions , Ácido Dioctil Sulfossuccínico , Micelas
13.
Phys Chem Chem Phys ; 24(4): 1982-1992, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34897314

RESUMO

By taking advantage of bulk-heterojunction structures formed by blending conjugated donor polymers and non-fullerene acceptors, organic photovoltaic devices have recently attained promising power conversion efficiencies of above 18%. For optimizing organic photovoltaic devices, it is essential to understand the elementary processes that constitute light harvesters. Utilising femtosecond-resolved spectroscopic techniques that can access the timescales of locally excited (LE) state and charge-transfer (CT)/-separated (CS) states, herein we explored their photophysics in single chains of the top-notch performance donor-acceptor polymer, PM6, which has been widely used as a donor in state-of-the-art non-fullerene organic photovoltaic devices, in a single LE state per chain regime. Our observations revealed the ultrafast formation of a CT state and its equilibrium with the parent LE state. From the chain-length dependence of their lifetimes, the equilibrated states were found to idle until they reach a chain folding. At the chain folding, the CT state transforms into an interchain CT state that bifurcates into forming a CS state or annihilation within a picosecond. The observation of prevalent nonexponential behaviour in the relaxation of the transient species is attributed to the wide chain-length distribution that determines the emergence of the chain foldings in a single chain, thus, the lifetime of a LE and equilibrated CT states. Our findings indicate that the abundance of chain folding, where the generation of the "reactive" CS state is initiated from the interchain CT state, is essential for maximising charge carriers in organic photovoltaic devices based on PM6.

14.
ACS Nano ; 15(12): 19480-19489, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34894669

RESUMO

Implementing the modern technologies of light-emitting devices, light harvesting, and quantum information processing requires the understanding of the structure-function relations at spatial scales below the optical diffraction limit and time scales of energy and information flows. Here, we distinctively combine cathodoluminescence (CL) with ultrafast electron microscopy (UEM), termed CL-UEM, because CL and UEM synergetically afford the required spectral and spatiotemporal sensitivities, respectively. For color centers in nanodiamonds, we demonstrate the measurement of CL lifetime with a local sensitivity of 50 nm and a time resolution of 100 ps. It is revealed that the emitting states of the color centers can be populated through charge transfer among the color centers across diamond lattices upon high-energy electron beam excitation. The technical advance achieved in this study will facilitate the specific control over energy conversion at nanoscales, relevant to quantum dots and single-photon sources.

15.
Membranes (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940409

RESUMO

Like protein phosphorylation, O-GlcNAcylation is a common post-translational protein modification. We already reported that O-GlcNAcylation of amyloid precursor protein (APP) in response to insulin signaling reduces neurotoxic amyloid-ß (Aß) production via inhibition of APP endocytosis. Internalized APP is delivered to endosomes and lysosomes where Aß is produced. However, the molecular mechanism involved in the effect of APP O-GlcNAcylation on APP trafficking remains unknown. To investigate the relationship between APP O-GlcNAcylation and APP endocytosis, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing APP and BACE1, and cultured rat hippocampal neurons. The present study showed that APP O-GlcNAcylation translocated APP from lipid raft to non-raft microdomains in the plasma membrane by using immunocytochemistry and discontinuous sucrose gradients method. By using the biotinylation method, we also found that APP preferentially underwent endocytosis from lipid rafts and that the amount of internalized APP from lipid rafts was specifically reduced by O-GlcNAcylation. These results indicate that O-GlcNAcylation can regulate lipid raft-dependent APP endocytosis via translocation of APP into non-raft microdomains. Our findings showed a new functional role of O-GlcNAcylation for the regulation of APP trafficking, offering new mechanistic insight for Aß production.

16.
ACS Appl Mater Interfaces ; 13(36): 43174-43185, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460240

RESUMO

Two kinds of dumbbell-shaped acceptor-donor-acceptor (A-D-A)-type triad single-component (SC) photovoltaic molecules based on a benzodithiophene-rhodanine (BDTRh) core and [6,6]-phenyl-C61 butyric acid (PC61BA) termini, BDTRh-C2-PC61BA and BDTRh-C10-PC61BA, were synthesized by modulating the alkyl (C2 and C10) spacer lengths. Both SC photovoltaic structures had similar UV-vis spectra in solution, but BDTRh-C10-PC61BA showed a significantly higher absorption coefficient as a thin film. In films, a more facile intermolecular photo-induced charge transfer was observed for BDTRh-C10-PC61BA in the broad-band transient absorption measurements. BDTRh-C10-PC61BA also exhibited a higher hole mobility (by 25 times) and less bimolecular recombination than BDTRh-C2-PC61BA. By plotting the normalized external quantum efficiency data, a higher charge-transfer state was measured for BDTRh-C10-PC61BA, reducing its voltage loss. A higher power conversion efficiency of ∼2% was obtained for BDTRh-C10-PC61BA, showing higher open-circuit voltage, short-circuit current density, and fill factor than those of BDTRh-C2-PC61BA devices. The different carrier dynamics, voltage loss, and optical and photoelectrical characteristics depending on the spacer length were interpreted in terms of the film morphology. The longer decyl spacer in BDTRh-C10-PC61BA afforded a significantly enhanced intermolecular ordering of the p-type core compared to BDTRh-C2-PC61BA, suggesting that the alkyl spacer length plays a critical role in controlling the intermolecular packing interaction.

17.
PLoS One ; 16(6): e0252922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143811

RESUMO

This study analyzed factors influencing clinical symptoms and treatment of patients with traffic accident injuries. It used a retrospective chart review and questionnaire survey obtained from 560 patients (266 men and 294 women). It also conducted follow-up observations of progress after car insurance settlements and investigated the usefulness of and patient satisfaction with integrative Korean medicine treatment for traffic accident injuries. Retrospective data of patients admitted for traffic accident injury were obtained. A questionnaire survey was conducted to collect data regarding the degree of traffic accident damage, severity of pain at settlement, any treatment after settlement and duration and cost of such treatment, and patient satisfaction with car insurance services and Korean medicine treatment for traffic accident injury. The results showed no significant association between pain and the degree of damage to the car at the time of traffic accident (P = 0.662), although the degree of damage to the car was more significantly associated with time to reach a car insurance settlement than severity of pain in the patient (P = 0.003). There was no significant association between the degree of damage to the car in a traffic accident and pain after a traffic accident. Greater severity of pain at the time of the car insurance settlement was associated with greater cost and longer time spent in treatment after the car insurance settlement.


Assuntos
Lesões Acidentais/economia , Lesões Acidentais/terapia , Acidentes de Trânsito/estatística & dados numéricos , Formulário de Reclamação de Seguro/estatística & dados numéricos , Dor/epidemiologia , Lesões Acidentais/complicações , Acidentes de Trânsito/psicologia , Adulto , Idoso , Feminino , Humanos , Medicina Integrativa , Masculino , Pessoa de Meia-Idade , Dor/etiologia , República da Coreia/epidemiologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Inquéritos e Questionários , Fatores de Tempo , Adulto Jovem
18.
Molecules ; 25(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255194

RESUMO

Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-ß (Aß) is produced via ß-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aß generation. ß-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Endocitose , Microdomínios da Membrana/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Metabolismo dos Lipídeos , Transporte Proteico , Transferrina/metabolismo
19.
Chempluschem ; 85(12): 2657-2665, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33305536

RESUMO

Water molecules in the immediate vicinity of biomacromolecules and biomimetic organized assemblies often exhibit a markedly distinct behavior from that of their bulk counterparts. The overall sluggish behavior of biological water substantially affects the stability and integrity of biomolecules, as well as the successful execution of various crucial water-mediated biochemical phenomena. In this Minireview, insights are provided into the features of truncated hydrogen-bond networks that grant biological water its unique characteristics. In particular, experimental results and theoretical investigations, based on chemical kinetics, are presented that have shed light on the dynamics and energetics governing such characteristics. It is emphasized how such details help us to understand the energetics of biological water, an aspect relatively less explored than its dynamics. For instance, when biological water at hydrophilic or charged protein surfaces was explored, the free energy of H-bond breakage was found to be of the order of 0.4 kcal mol-1 higher than that of bulk water.


Assuntos
Termodinâmica , Água/metabolismo , Metabolismo Energético , Ligação de Hidrogênio , Água/química
20.
ACS Nano ; 14(9): 11383-11393, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790334

RESUMO

Black phosphorus (BP) is an elemental layered material with a strong in-plane anisotropic structure. This structure is accompanied by anisotropic optical, electrical, thermal, and mechanical properties. Despite interest in BP from both fundamental and technical aspects, investigation into the structural dynamics of BP caused by strain fields, which are prevalent for two-dimensional (2D) materials and tune the material physical properties, has been overlooked. Here, we report the morphological dynamics of photoexcited BP membranes observed using time-resolved diffractograms and dark-field images obtained via ultrafast electron microscopy. Aided by 4D reconstruction, we visualize the nonequilibrium bulging of thin BP membranes and reveal that the buckling transition is driven by impulsive thermal stress upon photoexcitation in real time. The bulging, buckling, and flattening (on strain release) showed anisotropic spatiotemporal behavior. Our observations offer insights into the fleeting morphology of anisotropic 2D matter and provide a glimpse into the mapping of transient, modulated physical properties upon impulsive excitation, as well as strain engineering at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...