Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(48): 22896-22907, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30488924

RESUMO

We evaluated the change in the chemical structure between dielectrics (AlOx and HfOx) grown by atomic layer deposition (ALD) and oxidized black phosphorus (BP), as a function of air exposure time. Chemical and structural analyses of the oxidized phosphorus species (PxOy) were performed using atomic force microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, first-principles density functional theory calculations, and the electrical characteristics of field-effect transistors (FETs). Based on the combined experiments and theoretical investigations, we clearly show that oxidized phosphorus species (PxOy, until exposed for 24 h) are significantly decreased (self-reduction) during the ALD of AlOx. In particular, the field effect characteristics of a FET device based on Al2O3/AlOx/oxidized BP improved significantly with enhanced electrical properties, a mobility of ∼253 cm2 V-1 s-1 and an on-off ratio of ∼105, compared to those of HfO2/HfOx/oxidized BP with a mobility of ∼97 cm2 V-1 s-1 and an on-off ratio of ∼103-104. These distinct differences result from a significantly decreased interface trap density (Dit ∼ 1011 cm-2 eV-1) and subthreshold gate swing (SS ∼ 270 mV dec-1) in the BP device caused by the formation of stable energy states at the AlOx/oxidized BP interface, even with BP oxidized by air exposure.

2.
ACS Nano ; 11(7): 6682-6690, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28682590

RESUMO

Structural energy and power systems offer both mechanical and electrochemical performance in a single multifunctional platform. These are of growing interest because they potentially offer reduction in mass and/or volume for aircraft, satellites, and ground transportation. To this end, flexible graphene-based supercapacitors have attracted much attention due to their extraordinary mechanical and electrical properties, yet they suffer from poor strength. This problem may be exacerbated with the inclusion of functional guest materials, often yielding strengths of <15 MPa. Here, we show that graphene paper supercapacitor electrodes containing aramid nanofibers as guest materials exhibit extraordinarily high tensile strength (100.6 MPa) and excellent electrochemical stability. This is achieved by extensive hydrogen bonding and π-π interactions between the graphene sheets and aramid nanofibers. The trade-off between capacitance and mechanical properties is evaluated as a function of aramid nanofiber loading, where it is shown that these electrodes exhibit multifunctionality superior to that of other graphene-based supercapacitors, nearly rivaling those of graphene-based pseudocapacitors. We anticipate these composite electrodes to be a starting point for structural energy and power systems that harness the mechanical properties of aramid nanofibers.

3.
ACS Appl Mater Interfaces ; 9(20): 17125-17135, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28453246

RESUMO

Aramid nanofibers (ANFs), or nanoscale Kevlar fibers, are of interest for their high mechanical performance and functional nanostructure. The dispersible nature of ANFs opens up processing opportunities for creating mechanically robust and flexible nanocomposites, particularly for energy and power applications. The challenge is to manipulate ANFs into an electrode structure that balances mechanical and electrochemical performance to yield a robust and flexible electrode. Here, ANFs and graphene oxide (GO) sheets are blended using layer-by-layer (LbL) assembly to achieve mechanically flexible supercapacitor electrodes. After reduction, the resulting electrodes exhibit an ANF-rich structure where ANFs act as a polymer matrix that interfacially interacts with reduced graphene oxide sheets. It is shown that ANF/GO deposition proceeds by hydrogen bonding and π-π interactions, leading to linear growth (1.2 nm/layer pairs) and a composition of 75 wt % ANFs and 25 wt % GO sheets. Chemical reduction leads to a high areal capacitance of 221 µF/cm2, corresponding to 78 F/cm3. Nanomechanical testing shows that the electrodes have a modulus intermediate between those of the two native materials. No cracks or defects are observed upon flexing ANF/GO films 1000 times at a radius of 5 mm, whereas a GO control shows extensive cracking. These results demonstrate that electrodes containing ANFs and reduced GO sheets are promising for flexible, mechanically robust energy and power.

4.
ACS Macro Lett ; 5(3): 337-341, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35614701

RESUMO

We report a facile way to synthesize polythiophenes carrying pendant 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) radicals, here called PTATs, by electropolymerization in boron trifluoride diethyl etherate (BFEE). The spacing between the TEMPO radical and the polythiophene backbone is varied by an alkyl spacer (n = 2, 4, 6), and the electronic and electrochemical properties are examined using UV-vis spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Film morphologies are also studied via scanning electron microscopy (SEM) and atomic force microscopy (AFM), which show that the longer octyl chain placed between thiophene and TEMPO effectively suppresses aggregation. The highest conductivity and electroactivity are observed for n = 4 and n = 6, respectively. Such morphology differences provide an opportunity to better understand the charge transport and energy storage properties in electronic materials.

5.
ACS Appl Mater Interfaces ; 7(43): 24150-8, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26492360

RESUMO

Polyaniline (PANI)-based electrodes are promising candidates for energy storage, but their cycle life remains poor. Recent work suggests that secondary interactions may enhance polyaniline's electrochemical stability and cycle life, but evidence to date is not conclusive. Here, we investigate spray-assisted layer-by-layer assemblies containing polyaniline nanofibers (PANI NFs) or conventional PANI and poly(acrylic acid) (PAA), which provides hydrogen bonding and electrostatic interactions. This spray-on approach may be suitable for the deposition of PANI onto a variety of surfaces. The effects of PANI type, PAA pH, and PAA molecular weight on the growth behavior, conductivity, and electrochemical performance are examined. It is shown that LbL films with PANI NFs, higher molecular weight PAA, and lower PAA pH yield the thickest films, whereas the thinnest films come from conventional PANI assembled under similar conditions. Electron microscopy imaging and density measurements show that LbL films containing PANI NFs are very porous, whereas those containing conventional PANI are very dense (0.28 vs 1.33 g/cm(3), respectively). The difference in density dramatically affects the electrochemical properties in terms of capacity and long-term cycling behavior. Upon extended cycling, PANI NFs alone rapidly lose their electrochemical activity. On the other hand, PANI NF-based LbL films exhibited somewhat enhanced stability, and PANI-based LbL films were exceptionally stable, maintaining 94.7% of their capacity after 1000 cycles when cycled up to 4.2 V vs Li/Li(+). These results show that secondary interactions from PAA enhance stability, as does the selection of PANI type and the electrode's density.

6.
Nano Lett ; 15(2): 896-902, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25562118

RESUMO

Resonance energy transfer (RET) has been employed for interpreting the energy interaction of graphene combined with semiconductor materials such as nanoparticles and quantum-well (QW) heterostructures. Especially, for the application of graphene as a transparent electrode for semiconductor light emitting diodes, the mechanism of exciton recombination processes such as RET in graphene-semiconductor QW heterojunctions should be understood clearly. Here, we characterized the temperature-dependent RET behaviors in graphene/semiconductor QW heterostructures. We then observed the tuning of the RET efficiency from 5% to 30% in graphene/QW heterostructures with ∼60 nm dipole-dipole coupled distance at temperatures of 300 to 10 K. This survey allows us to identify the roles of localized and free excitons in the RET process from the QWs to graphene as a function of temperature.

7.
Chem Commun (Camb) ; (42): 6388-90, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19841786

RESUMO

The transition behavior and dynamics of ionic transport were strongly influenced by changes in the crystal structure and interaction field of the crystalline ionic gel electrolytes with respect to chemical compositions, as proven by impedance, (7)Li NMR, PCA and 2D IR COS.


Assuntos
Eletrólitos/química , Géis/química , Transporte de Íons , Cristalização , Lítio/química , Espectroscopia de Ressonância Magnética , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...