Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571194

RESUMO

Attempts have been made to introduce microstructures or wrinkles into the elastomer surface to increase the sensitivity of the elastomer. However, the disadvantage of this method is that when a force is applied to the pressure sensor, the contact area with the electrode is changed and the linear response characteristic of the pressure sensor is reduced. The biggest advantage of the capacitive pressure sensor using an elastomer is that it is a characteristic that changes linearly according to the change in pressure, so it is not suitable to introduce microstructures or wrinkles into the elastomer surface. A method of increasing the sensitivity of the capacitive pressure sensor while maintaining the linearity according to the pressure change is proposed. We proposed a bubble-popping PDMS by creating pores inside the elastomer. The sensitivity of the pressure sensor made of the bubble-popping PDMS was approximately 4.6 times better than that of the pressure sensor without pores, and the pressure sensor made of the bubble-popping PDMS showed a high linear response characteristic to the external pressure change. These results show that our pressure sensor can be used to detect applied pressures or contact forces of e-skins.

2.
Nucleic Acids Res ; 51(14): 7314-7329, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395395

RESUMO

ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.


Assuntos
Metilação de DNA , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Células Germinativas/metabolismo , Histonas/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 14(1): 2202, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072425

RESUMO

The main challenge in preparing a flexible mold stamp using roll-to-roll nanoimprint lithography is to simultaneously increase the imprintable area with a minimized perceptible seam. However, the current methods for stitching multiple small molds to fabricate large-area molds and functional surfaces typically rely on the alignment mark, which inevitably produces a clear alignment mark and stitched seam. In this study, we propose a mark-less alignment by the pattern itself method inspired by moiré technique, which uses the Fourier spectral analysis of moiré patterns formed by superposed identical patterns for alignment. This method is capable of fabricating scalable functional surfaces and imprint molds with quasi-seamless and alignment mark-free patterning. By harnessing the rotational invariance property in the Fourier transform, our approach is confirmed to be a simple and efficient method for extracting the rotational and translational offsets in overlapped periodic or nonperiodic patterns with a minimized stitched region, thereby allowing for the large-area and quasi-seamless fabrication of imprinting molds and functional surfaces, such as liquid-repellent film and micro-optical sheets, that surpass the conventional alignment and stitching limits and potentially expand their application in producing large-area metasurfaces.

4.
Cell Mol Life Sci ; 79(11): 569, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287261

RESUMO

The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low global DNA methylation, extensive "partially methylated domains" packed in dense heterochromatin and methylation of hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in placentation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual placental epigenetic state may arise. Nonetheless, key questions remain unresolved.


Assuntos
Epigenoma , Placenta , Feminino , Gravidez , Humanos , Placenta/metabolismo , Heterocromatina/metabolismo , Ilhas de CpG , Metilação de DNA , Epigênese Genética
5.
Adv Mater ; 34(34): e2203992, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35773228

RESUMO

A novel strategy for robust and ultrathin (<1 µm) multilayered protective structures to address uncontrolled Lithium (Li) dendrite growth at Li-metal battery anodes is reported. Synergetic interaction among Ag nanoparticles (Ag NPs), reduced graphene oxide (rGO) films, and self-assembled block-copolymer (BCP) layers enables effective suppression of dendritic Li growth. While Ag NP layer confines the growth of Li metal underneath the rGO layer, BCP layer facilitates the fast and uniformly distributed flux of Li-ion transport and mechanically supports the rGO layer. Notably, highly aligned nanochannels with ≈15 nm diameter and ≈600 nm length scale interpenetrating within the BCP layer offer reversible well-defined pathways for Li-ion transport. Dramatic stress relaxation with the multilayered structure is confirmed via structural simulation considering the mechanical stress induced by filamentary-growth of Li metal. Li-metal anodes modified with the protective layer well-maintain stable reaction interfaces with limited solid-electrolyte interphase formation, yielding outstanding cycling stability and enhanced rate capability, as demonstrated by the full-cells paired with high-loading of LiFePO4 cathodes. The idealized design of multilayer protective layer provides significant insight for advanced Li-metal anodes.

6.
Genome Res ; 32(5): 825-837, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35396277

RESUMO

Epigenetic modifications on the chromatin do not occur in isolation. Chromatin-associated proteins and their modification products form a highly interconnected network, and disturbing one component may rearrange the entire system. We see this increasingly clearly in epigenetically dysregulated cancers. It is important to understand the rules governing epigenetic interactions. Here, we use the mouse embryonic stem cell (mESC) model to describe in detail the relationships within the H3K27-H3K36-DNA methylation subnetwork. In particular, we focus on the major epigenetic reorganization caused by deletion of the histone 3 lysine 36 methyltransferase NSD1, which in mESCs deposits nearly all of the intergenic H3K36me2. Although disturbing the H3K27 and DNA methylation (DNAme) components also affects this network to a certain extent, the removal of H3K36me2 has the most drastic effect on the epigenetic landscape, resulting in full intergenic spread of H3K27me3 and a substantial decrease in DNAme. By profiling DNMT3A and CHH methylation (mCHH), we show that H3K36me2 loss upon Nsd1-KO leads to a massive redistribution of DNMT3A and mCHH away from intergenic regions and toward active gene bodies, suggesting that DNAme reduction is at least in part caused by redistribution of de novo methylation. Additionally, we show that pervasive acetylation of H3K27 is regulated by the interplay of H3K36 and H3K27 methylation. Our analysis highlights the importance of H3K36me2 as a major determinant of the developmental epigenome and provides a framework for further consolidating our knowledge of epigenetic networks.


Assuntos
Cromatina , Histonas , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Histonas/metabolismo , Camundongos
7.
Rev Sci Instrum ; 92(10): 103906, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717372

RESUMO

Demand for high throughput manufacturing has recently increased in various fields, such as electronics, photonics, optical devices, and energy. Moreover, flexible electronic devices are indispensable in applications such as touch screens, transparent conductive electrodes, transparent film heaters, organic photovoltaics, organic light-emitting diodes, and battery. For these applications, a large-area roll-to-roll (R2R) process is a promising method for producing with high throughput. However, bending deformation of rollers is unavoidable in a large-scale R2R system, which produces non-uniformity in force distribution during processing and reduces the sample quality. In this study, we propose a new R2R imprinting module to mitigate the deformation by using an additional backup roller to achieve uniform force distribution. From numerical simulations, we found that there exists an optimal imprinting force for each backup roller length to obtain the best uniformity. Experimental results using a large-area pressure sensor verified the effectiveness of the proposed method. Finally, the R2R nanoimprint lithography process showed that the proposed method produces patterns of 100 nm width with uniform residual layer thickness, which are distributed across the substrate of 1.2 m width.

8.
ACS Appl Mater Interfaces ; 13(33): 40062-40069, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34379391

RESUMO

The flashlight annealing process has been widely used in the field of flexible and printed electronics because it can instantly induce chemical and structural modifications over a large area on an electronic functional layer in a subsecond time range. In this study, for the first time, we explored a straightforward method to develop strong self-adhesion on a metal nanowire-based flexible and transparent conductive film via flashlight irradiation. Nanowire interlocking, for strong mechanical bonding at the interface between the nanowires and polyamide film, was achieved by simple hot pressing. Then, by irradiating the nanowire-impregnated film with a flashlight, several events such as interdiffusion and melting of surface polymers could be induced along with morphological changes leading to an increase in the film surface area. As a result, the surface of the fabricated film exhibited strong interfacial interactions while forming intimate contact with the heterogeneous surfaces of other objects, thereby becoming strongly self-adhesive. This readily achievable, self-attachable, flexible, and transparent electrode allowed the self-interconnection of a light-emitting diode chip, and it was also compatible for various applications, such as defogging windows and transparent organic light-emitting diodes.

9.
ACS Appl Mater Interfaces ; 13(13): 15205-15215, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769779

RESUMO

Si has attracted considerable interest as a promising anode material for next-generation Li-ion batteries owing to its outstanding specific capacity. However, the commercialization of Si anodes has been consistently limited by severe instabilities originating from their significant volume change (approximately 300%) during the charge-discharge process. Herein, we introduce an ultrafast processing strategy of controlled multi-pulse flash irradiation for stabilizing the Si anode by modifying its physical properties in a spatially stratified manner. We first provide a comprehensive characterization of the interactions between the anode materials and the flash irradiation, such as the condensation and carbonization of binders, sintering, and surface oxidation of the Si particles under various irradiation conditions (e.g., flash intensity and irradiation period). Then, we suggest an effective route for achieving superior physical properties for Si anodes, such as robust mechanical stability, high electrical conductivity, and fast electrolyte absorption, via precise adjustment of the flash irradiation. Finally, we demonstrate flash-irradiated Si anodes that exhibit improved cycling stability and rate capability without requiring costly synthetic functional binders or delicately designed nanomaterials. This work proposes a cost-effective technique for enhancing the performance of battery electrodes by substituting conventional long-term thermal treatment with ultrafast flash irradiation.

10.
Stem Cell Reports ; 15(1): 198-213, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32619492

RESUMO

Human embryonic stem cells (hESCs) readily differentiate to somatic or germ lineages but have impaired ability to form extra-embryonic lineages such as placenta or yolk sac. Here, we demonstrate that naive hESCs can be converted into cells that exhibit the cellular and molecular phenotypes of human trophoblast stem cells (hTSCs) derived from human placenta or blastocyst. The resulting "transdifferentiated" hTSCs show reactivation of core placental genes, acquisition of a placenta-like methylome, and the ability to differentiate to extravillous trophoblasts and syncytiotrophoblasts. Modest differences are observed between transdifferentiated and placental hTSCs, most notably in the expression of certain imprinted loci. These results suggest that naive hESCs can differentiate to extra-embryonic lineage and demonstrate a new way of modeling human trophoblast specification and placental methylome establishment.


Assuntos
Metilação de DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma/genética , Trofoblastos/citologia , Transdiferenciação Celular/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Impressão Genômica , Humanos , Integrina alfa2/metabolismo , Placenta/citologia , Gravidez , Primeiro Trimestre da Gravidez/fisiologia , Reprodutibilidade dos Testes , Trofoblastos/metabolismo
11.
Nanoscale ; 12(4): 2366-2373, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31960872

RESUMO

Development of electronic devices on ultrathin flexible plastic substrates is of great value in terms of portability, cost reduction, and mechanical flexibility. However, because thin plastic substrates with low heat capacity can be more easily damaged by thermal energy, their use is limited. Highly flexible nanowire (NW) transparent conductive electrodes on ultrathin (∼10 µm) low cost polyethylene terephthalate (PET) substrates are fabricated. The control of intense pulsed light (IPL) irradiation process parameters to induce NW welding for maximum conductivity and minimal thermal damage of the PET substrate is explored. For this purpose, trends in temperature variation of NW thin films irradiated by IPL under various operating conditions are numerically analyzed using commercial software. Simulations indicate that irradiating light operated at a higher voltage and for a shorter time, and use of multiple pulses of low frequency can reduce thermal deformation of the PET substrate. Furthermore, we experimentally confirm that NW transparent electrodes can be successfully fabricated with less thermal deformation of the ultrathin plastic substrate when light is irradiated under well-controlled conditions derived from the simulation. The highly flexible NW transparent conducting electrode exhibits excellent mechanical flexibility to withstand severe deformation and can be successfully implemented in flexible organic light-emitting diodes (OLEDs).

12.
ACS Appl Mater Interfaces ; 11(16): 14882-14891, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30919616

RESUMO

Conventional printing technologies such as inkjet, screen, and gravure printing have been used to fabricate patterns of silver nanowire (AgNW) transparent conducting electrodes (TCEs) for a variety of electronic devices. However, they have critical limitations in achieving micrometer-scale fine line width, uniform thickness, sharp line edge, and pattering of various shapes. Moreover, the optical and electrical properties of printed AgNW patterns do not satisfy the performance required by flexible integrated electronic devices. Here, we report a high-resolution and large-area patterning of highly conductive AgNW TCEs by reverse offset printing and intense pulsed light (IPL) irradiation for flexible integrated electronic devices. A conductive AgNW ink for reverse offset printing is prepared by carefully adjusting the composition of AgNW content, solvents, surface energy modifiers, and organic binders for the first time. High-quality and high-resolution AgNW micropatterns with various shapes and line widths are successfully achieved on a large-area plastic substrate (120 × 100 mm2) by optimizing the process parameters of reverse offset printing. The reverse offset printed AgNW micropatterns exhibit superior fine line widths (up to 6 µm) and excellent pattern quality such as sharp line edge, fine line spacing, effective wire junction connection, and smooth film roughness. They are post-processed with IPL irradiation, thereby realizing excellent optical, electrical, and mechanical properties. Furthermore, flexible OLEDs and heaters based on reverse offset printed AgNW micropatterns are successfully fabricated and characterized, demonstrating the potential use of the reverse offset printing for the conductive AgNW ink.

13.
J Vis Exp ; (139)2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30272669

RESUMO

Multiscale surface structures have attracted increasing interest owing to several potential applications in surface devices. However, an existing challenge in the field is the fabrication of hybrid micro-nano structures using a facile, cost-effective, and high-throughput method. To overcome these challenges, this paper proposes a protocol to fabricate multiscale structures using only an imprint process with an anodic aluminum oxide (AAO) filter and an evaporative self-aggregation process of nanofibers. Unlike previous attempts that have aimed to straighten nanofibers, we demonstrate a unique fabrication method for multiscale aggregated nanofibers with high aspect ratios. Furthermore, the surface morphology and wettability of these structures on various liquids were investigated to facilitate their use in multifunctional surfaces.


Assuntos
Nanofibras/química
14.
Small ; 14(21): e1800676, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665206

RESUMO

A simple route to fabricate defect-free Ag-nanoparticle-carbon-nanotube composite-based high-resolution mesh flexible transparent conducting electrodes (FTCEs) is explored. In the selective photonic sintering-based patterning process, a highly soft rubber or thin plastic substrate is utilized to achieve close and uniform contact between the composite layer and photomask, with which uniform light irradiation can be obtained with diminished light diffraction. This well-controlled process results in developing a fine and uniform mesh pattern (≈12 µm). The mesh patternability is confirmed to be dependent on heat distribution in the selectively light-irradiated film and the pattern design for FTCE could be adopted for more precise patterns with desired performance. Moreover, using a very thin substrate could allow the mesh to be positioned closer to the strain-free neutral mechanical plane. Due to strong interfacial adhesion between the mesh pattern and substrate, the mesh FTCE could tolerate severe mechanical deformation without performance degradation. It is demonstrated that a transparent heater with fine mesh patterns on thin substrate can maintain stability after 100 repeated washing test cycles in which a variety of stress situations occurring in combination. The presented highly durable FTCE and simple fabrication processes may be widely adoptable for various flexible, large-area, and wearable optoelectronic devices.

15.
Nanoscale ; 10(17): 7890-7897, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29560480

RESUMO

Recently, the demand for stretchable strain sensors used for detecting human motion is rapidly increasing. This paper proposes high-performance strain sensors based on Ag flake/Ag nanocrystal (NC) hybrid materials incorporated into a polydimethylsiloxane (PDMS) elastomer. The addition of Ag NCs into an Ag flake network enhances the electrical conductivity and sensitivity of the strain sensors. The intense localized heating of Ag flakes/NCs is induced by intense pulsed light (IPL) irradiation, to achieve efficient sintering of the Ag NCs within a second, without damaging the PDMS matrix. This leads to significant improvement in the sensor sensitivity. Our strain sensors are highly stretchable (maximum strain = 80%) and sensitive (gauge factor = 7.1) with high mechanical stability over 10 000 stretching cycles under 50% strain. For practical demonstration, the fabrication of a smart glove for detecting the motions of fingers and a sports band for measuring the applied arm strength is also presented. This study provides an effective method for fabricating elastomer-based high-performance stretchable electronics.


Assuntos
Elastômeros , Movimento , Nanopartículas , Prata , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Fótons
16.
ACS Appl Mater Interfaces ; 9(7): 6163-6170, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28146354

RESUMO

Recently, highly flexible conductive features have been widely demanded for the development of various electronic applications, such as foldable displays, deformable lighting, disposable sensors, and flexible batteries. Herein, we report for the first time a selective photonic sintering-derived, highly reliable patterning approach for creating extremely flexible carbon nanotube (CNT)/silver nanoparticle (Ag NP) composite electrodes that can tolerate severe bending (20 000 cycles at a bending radius of 1 mm). The incorporation of CNTs into a Ag NP film can enhance not only the mechanical stability of electrodes but also the photonic-sintering efficiency when the composite is irradiated by intense pulsed light (IPL). Composite electrodes were patterned on various plastic substrates by a three-step process comprising coating, selective IPL irradiation, and wiping. A composite film selectively exposed to IPL could not be easily wiped from the substrate, because interfusion induced strong adhesion to the underlying polymer substrate. In contrast, a nonirradiated film adhered weakly to the substrate and was easily removed, enabling highly flexible patterned electrodes. The potential of our flexible electrode patterns was clearly demonstrated by fabricating a light-emitting diode circuit and a flexible transparent heater with unimpaired functionality under bending, rolling, and folding.

17.
ACS Nano ; 10(8): 7847-54, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27434639

RESUMO

Simple, low-cost and scalable patterning methods for Cu nanowire (NW)-based flexible transparent conducting electrodes (FTCEs) are essential for the widespread use of Cu NW FTCEs in numerous flexible optoelectronic devices, wearable devices, and electronic skins. In this paper, continuous patterning for Cu NW FTCEs via a combination of selective intense pulsed light (IPL) and roll-to-roll (R2R) wiping process was explored. The development of continuous R2R patterning could be achieved because there was significant difference in adhesion properties between NWs and substrates depending on whether Cu NW coated area was irradiated by IPL or not. Using a custom-built, R2R-based wiping apparatus, it was confirmed that nonirradiated NWs could be clearly removed out without any damage on irradiated NWs strongly adhered to the substrate, resulting in continuous production of low-cost Cu NW FTCE patterns. In addition, the variations in microscale pattern size by varying IPL process parameters/the mask aperture sizes were investigated, and possible factors affecting on developed pattern size were meticulously examined. Finally, the successful implementation of the patterned Cu NW FTCEs into a phosphorescent organic light-emitting diode (PhOLED) and a flexible transparent conductive heater (TCH) were demonstrated, verifying the applicability of the patterned FTCEs. It is believed that our study is the key step toward realizing the practical use of NW FTCEs in various flexible electronic devices.

18.
Nanoscale ; 8(16): 8995-9003, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27074548

RESUMO

Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.

19.
Rev Sci Instrum ; 87(1): 015102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827348

RESUMO

In printed electronics technology, the overlay accuracy of printed patterns is a very important issue when applying printing technology to the production of electric devices. In order to achieve accurate positioning of the printed patterns, this study proposes a novel precision reverse offset printing system. Furthermore, the study evaluates the effects of synchronization and printing force on position errors of the printed patterns, and presents methods of controlling synchronization and printing force so as to eliminate positional errors caused by the above-mentioned reasons. Finally, the printing position repeatability of 0.40 µm and 0.32 µm (x and y direction, respectively) at a sigma level is obtained over the dimension of 100 mm under repeated printing tests with identical printing conditions.

20.
Rev Sci Instrum ; 86(5): 055108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026559

RESUMO

For high-quality flexible devices from printing processes based on Roll-to-Roll (R2R) systems, overlay alignment during the patterning of each functional layer poses a major challenge. The reason is because flexible substrates have a relatively low stiffness compared with rigid substrates, and they are easily deformed during web handling in the R2R system. To achieve a high overlay accuracy for a flexible substrate, it is important not only to develop web handling modules (such as web guiding, tension control, winding, and unwinding) and a precise printing tool but also to control the synchronization of each unit in the total system. A R2R web handling system and reverse offset printing process were developed in this work, and an overlay between the 1st and 2nd layers of ±5µm on a 500 mm-wide film was achieved at a σ level of 2.4 and 2.8 (x and y directions, respectively) in a continuous R2R printing process. This paper presents the components and mechanisms used in reverse offset printing based on a R2R system and the printing results including positioning accuracy and overlay alignment accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...