Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889612

RESUMO

Exciton-polaritons (EPs) can be formed in transition metal dichalcogenide (TMD) multilayers sustaining optical resonance modes without any external cavity. The self-hybridized EP modes are expected to depend on the TMD thickness, which directly determines the resonance wavelength. Exfoliated WS2 flakes were prepared on SiO2/Si substrates and template-stripped ultraflat Au layers, and the thickness dependence of their EP modes was compared. For WS2 flakes on SiO2/Si, the minimum flake thickness to exhibit exciton-photon anticrossing was larger than 40 nm. However, for WS2 flakes on Au, EP mode splitting appeared in flakes thinner than 10 nm. Analytical and numerical calculations were performed to explain the distinct thickness-dependence. The phase shifts of light at the WS2/Au interface, originating from the complex Fresnel coefficients, were as large as π/2 at visible wavelengths. Such exceptionally large phase shifts allowed the optical resonance and resulting EP modes in the sub-10-nm-thick WS2 flakes. This work helps us to propose novel optoelectronic devices based on the intriguing exciton physics of TMDs.

2.
Adv Sci (Weinh) ; 9(23): e2201875, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35712754

RESUMO

Integration of distinct materials to form heterostructures enables the proposal of new functional devices based on emergent physical phenomena beyond the properties of the constituent materials. The optical responses and electrical transport characteristics of heterostructures depend on the charge and exciton transfer (CT and ET) at the interfaces, determined by the interfacial energy level alignment. In this work, heterostructures consisting of aggregates of fluorescent molecules (DY1) and 2D semiconductor MoS2 monolayers are fabricated. Photoluminescence spectra of DY1/MoS2 show quenching of the DY1 emission and enhancement of the MoS2 emission, indicating a strong electronic interaction between these two materials. Nanoscopic mappings of the light-induced contact potential difference changes rule out the CT process at the interface. Using femtosecond transient absorption spectroscopy, the rapid interfacial ET process from DY1 aggregates to MoS2 and a fourfold extension of the exciton lifetime in MoS2 are elucidated. These results suggest that the integration of 2D inorganic semiconductors with fluorescent molecules can provide versatile approaches to engineer the physical characteristics of materials for both fundamental studies and novel optoelectronic device applications.

3.
Nanomaterials (Basel) ; 12(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35564276

RESUMO

We fabricated hybrid nanostructures consisting of MoS2 monolayers and Au nanopillar (Au-NP) arrays. The surface morphology and Raman spectra showed that the MoS2 flakes transferred onto the Au-NPs were very flat and nonstrained. The Raman and photoluminescence intensities of MoS2/Au-NP were 3- and 20-fold larger than those of MoS2 flakes on a flat Au thin film, respectively. The finite-difference time-domain calculations showed that the Au-NPs significantly concentrated the incident light near their surfaces, leading to broadband absorption enhancement in the MoS2 flakes. Compared with a flat Au thin film, the Au-NPs enabled a 6-fold increase in the absorption in the MoS2 monolayer at a wavelength of 615 nm. The contact potential difference mapping showed that the electric potential at the MoS2/Au contact region was higher than that of the suspended MoS2 region by 85 mV. Such potential modulation enabled the Au-NPs to efficiently collect photogenerated electrons from the MoS2 flakes, as revealed by the uniform positive surface photovoltage signals throughout the MoS2 surface.

4.
Sci Rep ; 11(1): 16978, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417488

RESUMO

Understanding the excitonic processes at the interfaces of fluorescent π-conjugated molecules and metal electrodes is important for both fundamental studies and emerging applications. Adsorption configurations of molecules on metal surfaces significantly affect the physical characteristics of junctions as well as molecules. Here, the electronic structures and optical properties of molecular assemblies/Au interfaces were investigated using scanning probe and photoluminescence microscopy techniques. Scanning tunneling microscopy images and tunneling conductance spectra suggested that the self-assembled molecules were physisorbed on the Au surface. Visible-range photoluminescence studies showed that Au thin films modified the emission spectra and reduced the lifetime of excitons. Surface potential maps, obtained by Kelvin probe force microscopy, could visualize electron transfer from the molecules to Au under illumination, which could explain the decreased lifetime of excitons at the molecule/Au interface.

5.
Nanoscale Adv ; 3(3): 710-715, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36133848

RESUMO

The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO2 nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS2 layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS2 were conformally grown on the NP-patterned SiO2/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS2 layers on the SiO2 NPs were larger than those observed from a flat SiO2 surface. For 100 nm-SiO2/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS2 layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS2 layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34977335

RESUMO

Not because of the unexpected global pandemic, but because of the emergence of educational technology and pedagogical innovation, the ways of teaching and learning have been switched to technology integrated modes such as blended and flipped learning which is more than changing to online from face-to-face. Yet, many institutes, which rely on a conventional residential teaching mode or use learning management systems (LMS) as an additive tool, are further struggling to adjust to the new environment. In this paper, we argue that the identity changes of three components, instructor, learner, and LMS are inevitable for authentic online teaching and learning. By applying conceptual frameworks for the identity changes with four sequential levels, we evaluated Blackboard course sites (n = 53) and analysed course evaluations (n = 41) from a university that remained holding a traditional classroom mode and using an LMS in a non-integrated way. As a result, only a few courses appeared at higher levels of the identity changes. To integrate the identity changes in online learning and teaching, we argue that an LMS should be designed and managed as a learning community; both instructors and learners should be repositioned as co-participants; and they should work together to build a post-learning community by practicing community membership.

7.
Small ; 16(48): e2003865, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150725

RESUMO

Solution-processed Cu(In,Ga)(S,Se)2  (CIGS) has a great potential for the production of large-area photovoltaic devices at low cost. However, CIGS solar cells processed from solution exhibit relatively lower performance compared to vacuum-processed devices because of a lack of proper composition distribution, which is mainly instigated by the limited Se uptake during chalcogenization. In this work, a unique potassium treatment method is utilized to improve the selenium uptake judiciously, enhancing grain sizes and forming a wider bandgap minimum region. Careful engineering of the bandgap grading structure also results in an enlarged space charge region, which is favorable for electron-hole separation and efficient charge carrier collection. Besides, this device processing approach has led to a linearly increasing electron diffusion length and carrier lifetime with increasing the grain size of the CIGS film, which is a critical achievement for enhancing photocurrent yield. Overall, 15% of power conversion efficiency is achieved in solar cells processed from environmentally benign solutions. This approach offers critical insights for precise device design and processing rules for solution-processed CIGS solar cells.

8.
ACS Appl Mater Interfaces ; 12(43): 48991-48997, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33048546

RESUMO

We prepared MoS2 monolayers on Au nanodot (ND) and nanohole (NH) arrays. Both these sample arrays exhibited enhanced photoluminescence intensity compared with that of a bare SiO2/Si substrate. The reflectance spectra of MoS2/ND and MoS2/NH had clear features originating from excitation of localized surface plasmon and propagating surface plasmon polaritons. Notably, the surface photovoltages (SPV) of these hybrid plasmonic nanostructures had opposite polarities, indicating negative and positive charging at MoS2/ND and MoS2/NH, respectively. Surface potential maps, obtained by Kelvin probe force microscopy, suggested that the potential gradient led to a distinct spatial distribution of photo-generated charges in these two samples under illumination. Furthermore, the local density of photo-generated excitons, as predicted from optical simulations, explained the SPV spectra of MoS2/ND and MoS2/NH. We show that the geometric configuration of the plasmonic nanostructures modified the polarity of photo-generated excess charges in MoS2. These findings point to a useful means of optimizing optoelectronic characteristics and improving the performance of MoS2-based plasmonic devices.

9.
ACS Appl Mater Interfaces ; 12(39): 44088-44093, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32892618

RESUMO

We fabricated plasmonic hybrid nanostructures consisting of MoS2 monolayer flakes and Au nanogratings with a period of 500 nm. The angle-resolved reflectance and photoluminescence spectra of the hybrid nanostructures clearly indicated a coupling between surface plasmon polaritons (SPPs) and incoming photons. The surface photovoltage (SPV) maps could visualize the spatial distribution of net charges while shining light on the sample. Considerable polarization and wavelength dependence of the SPV signals suggested that the SPP mode enhanced the light-matter interaction and resulting exciton generation in the MoS2 monolayer. From the photoluminescence spectra and the morphology of the suspended MoS2 region, it could be noted that light irradiation did not much raise the temperature of the MoS2 monolayers on the nanogratings. Nanoscopic SPV and surface topography measurements could reveal the local optoelectronic and mechanical properties of MoS2 monolayers. This work provided us insights into the proposal of a high-performance MoS2/metal optoelectronic devices, based on the understanding of the SPP-photon and SPP-exciton coupling.

10.
ACS Appl Mater Interfaces ; 12(32): 36082-36091, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664721

RESUMO

Fabrication of Cu(In,Ga)(S,Se)2 (CIGSSe) absorber films from environmentally friendly solutions under ambient air conditions for use in solar cells has shown promise for the low-cost mass production of CIGSSe solar cells. However, the limited power conversion efficiency (PCE) of these solar cells compared with their vacuum-processed counterparts has been a critical setback to their practical applications. This study aims to fabricate solution-processed CIGSSe solar cells with high PCEs by incorporation of Ag into the precursor layer of the CIGSSe absorber films. The results showed that Ag doping promoted grain growth by accelerating Se uptake, irrespective of the location within the CIGSSe film. Nevertheless, uniform Ag doping formed crevices that lowered the PCE of the cells, while centrally localizing the doped Ag prevented the formation of crevices, resulting in high PCEs up to 15.3%. Our results demonstrate that carefully doping Ag into a selected area of the precursor layer of the CIGSSe films can realize solution-processed chalcopyrite solar cells with high PCE.

11.
J Phys Chem Lett ; 11(8): 3039-3044, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32223266

RESUMO

Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton-plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons.

12.
Sci Rep ; 9(1): 14434, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594976

RESUMO

In this work, the surface potential (VS) of exfoliated MoS2 monolayers on Au nanostripe arrays with period of 500 nm was investigated using Kelvin probe force microscopy. The surface morphology showed that the suspended MoS2 region between neighboring Au stripes underwent tensile-strain. In the dark, the VS of the MoS2 region on the Au stripe (VS-Au) was larger than that of the suspended MoS2 region (VS-S). However, under green light illumination, VS-Au became smaller than VS-S. To explain the VS modification, band diagrams have been constructed taking into consideration not only the local strain but also the electronic interaction at the MoS2/Au interface. The results of this work provide a basis for understanding the electrical properties of MoS2-metal contacts and improving the performance of MoS2-based optoelectronic devices.

13.
ACS Appl Mater Interfaces ; 10(42): 36136-36143, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30261138

RESUMO

A growth technique to directly prepare two-dimensional (2D) materials onto conventional semiconductor substrates, enabling low-temperature, high-throughput, and large-area capability, is needed to realize competitive 2D transition-metal dichalcogenide (TMD)/three-dimensional (3D) semiconductor heterojunction devices. Therefore, we herein successfully developed an atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique, which could grow MoS2 and WS2 multilayers directly onto PET flexible substrate as well as 4-in. Si substrates at temperatures of <200 °C. The as-fabricated MoS2/Si and WS2/Si heterojunctions exhibited large and fast photocurrent responses under illumination of a green light. The measured photocurrent was linearly proportional to the laser power, indicating that trapping and detrapping of the photogenerated carriers at defect states could not significantly suppress the collection of photocarriers. All the results demonstrated that our AP-PECVD method could produce high-quality TMD/Si 2D-3D heterojunctions for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...